What Magnetic Measurements tell us about magnetism?

Viorel Pop

Babeş-Bolyai University, Faculty of Physics, Cluj-Napoca, Romania

Magnetic moment

An electrical current, I, is the source of a magnetic field B

$$\mathbf{B} = \frac{\mu_0}{4\pi} \int_C \frac{\mathrm{Idl}}{\mathrm{r}^2} \times \frac{\mathrm{r}}{\mathrm{r}}$$

Magnetic field generated by a single-turn coil

magnetisation magnetic susceptibility magnetic permeability

$$\chi = \frac{M}{H}$$

$$\vec{\mathbf{B}} = \mu_0 \left(\vec{\mathbf{H}} + \vec{\mathbf{M}} \right)$$

 $B = \mu_0(H + \chi H) = \mu_0(1 + \chi)H = \mu H$

 $\mu_0 = 4\pi \cdot 10^{-7} \text{ H/m}$

Diamagnetic

Diamagnetic

Diamagnetic

c) ferrimagnetism

 Fe_3O_4 , ferrites, $GdCo_5$,...

$$H_d = N_{\parallel}M_s \Leftarrow \vec{H}_d = -N_d\vec{M} \Rightarrow H_d = N_\perp M_s$$

The influence of the demagnetising field on the magnetisation curves

 $\vec{H}_d = -N_d \vec{M}$ $\overrightarrow{H} = \vec{H}_i = \vec{H}_a + \vec{H}_d$ H_a = applied field

Case study:

magnetic measurements on *plate shape samples*

NO MAGNETOCRYSTALLINE ANISOTROPY

Magnetic measurements give magnetisation (A/m)

Curie temperature evaluation

$$T \rightarrow T_c; T < Tc$$
 $\left[\frac{M(T)}{M(0)}\right]^2 = \frac{10}{3} \cdot \frac{(J+1)^2}{J^2 + (J+1)^2} \left(1 - \frac{T}{T_c}\right)$

O. Isnard, V. Pop, K.H.J. Buschow, J. Magn. Magn. Mat. 256 (2003) 133

In the low magnetisation region - for example $T \rightarrow Tc$; T < Tc

$$F_m(M) = a \frac{M^2}{2} + b \frac{M^4}{4} + \dots - \mu_0 MH$$

$$\frac{dF_m}{dM} = 0 \implies aM + bM^3 = \mu_0 H \quad \text{or} \quad M^2 = \frac{M}{H} \frac{\mu_0}{b} - \frac{a}{b}$$

molecular field approximations:

$$\frac{\mu_0 N_{ii} (T - T_c)}{T_c} M + \frac{\mu_0 3 (2J^2 + 2J + 1)T}{10M_0^2 (J + 1)^2 C} M^3 = \mu_0 H$$

 $H_{m} = N_{ii} M$ $N_{ii} = T_{c}/C$ $a = \frac{\mu_{0} N_{ii} (T - T_{c})}{T_{c}}$ T < Tc - a < 0 T = Tc - a = 0 T > Tc. - a > 0

$$\boldsymbol{b} = \frac{\mu_0 3(2\boldsymbol{J}^2 + 2\boldsymbol{J} + 1)\boldsymbol{T}}{10\boldsymbol{M}_0^2 (\boldsymbol{J} + 1)^2 \boldsymbol{C}}$$

- r = 1 local moment limit
- $r \rightarrow \infty$ total delocalisation limit

	Gd ¹	Fe ¹	Co ¹	ThFe ₁₁ C _{1.5} ²	Fe ₃ C ³	HoCo₄Si⁴	YCo ₃ B ₂ ⁵
r	1.00	1.01	1.32	1.5	1.69	2.03	$\rightarrow \infty$

- ¹ P.R. Rhodes, E.P. Wolfarth, Proc. R. Soc. 273 (1963) 347.
- ² O. Isnard, V. Pop, K.H.J. Buschow, J. Magn. Magn. Mat. 256 (2003) 133
- ³ D. Bonnenberg, K.A. Hempel, H.P.J. Wijn, Landolt-B.orsntein new series, Vol. III, 19a, Springer, Berlin, 1986, p. 142.
- ⁴ O. Isnard, N. Coroian, V. Pop (unpublished)
- ⁵ R. Ballou, E. Burzo, and V. Pop, J. Magn. Magn. Mat. 140-144 (1995) 945.

axial symmetry:

 $\boldsymbol{E}_{\boldsymbol{a}} \approx \boldsymbol{K}_1 \sin^2 \boldsymbol{\theta}$

T < T_N, antiferromagnetic materials, $\chi_{\perp} > \chi_{\parallel}$ Density of energy in magnetic field H, low anisotropy energy $E = -\chi \mu_0 H^2/2$ <u>spin – flop</u> transition M Η M $\mathbf{M}_{\mathbf{H}}$ (Z)M H (z)N H (a) (z)(b)M M Η () $H_c = \sqrt{H_a H_{ex}}$

E. Du Trémolet de Lacheisserie (editor), Magnetisme, Presses Universitaires de Grenoble, 1999

High anisotropy energy <u>spin – flip</u> transition

also in ferrimagnetic materials

Hard magnetic materials

Hysteresis measurements in soft magnetic materials

 $H_{SI} = 10^3/4\pi \cdot H_{CGS} \approx 80 H_{CGS}$

Hard Magnetic Nanocrystalline Materials

Hard Magnetic Nanocrystalline Materials

V. Pop, O. Isnard, I. Chicinas, D. Givord, Proceedings of Euro PM2005, Prague

N.H. Hai, N.M. Dempsey, D. Givord, JMMM262 (2003) 353

Fig. 6. Room temperature magnetisation loops of Fe-rich FePt foils heat treated in the temperature range 300-700 °C ($t_{maxel} = 60$ min).

Exchange bias

FIG. 2. Hysteresis loops of NiFe/CoO bilayer for (a) continuous film, an patterned nanodots with dimensions of (b) 900×900 , (c) 700×700 , (500×500 , and (e) 300×300 nm².

recoil loops

Major hysteresis loops with a selection of minor re-magnetization curves (broken lines) and recoil loops for (a) single-phase Sm2Fe14Ga3C2 and (b) two-phase $Sm_2Fe_{14}Ga_3C_2/40vol\%$ -Fe. (Feutril et al, J. Phys.D: Appl. Phys. 29 (1996) 2320)

-50

-2

0

V. Pop, O. Isnard, I. Chicinas, D. Givord, (be published)

MECHANICAL ALLOYING soft magnetic materials

