X-ray Photoelectron Spectroscopy (XPS) and Magnetism

• Part I

Introduction Experimental Principles of XPS and SRPES Selected results (intermetallic, organometallic, spinels)

• Part II

Investigation of oxidic CMR compounds by XPS and complementary techniques

Introduction

PES	Photoelectron Spectroscopy
XPS	X-ray (excited) PES
ESCA	Electron Spectroscopy for Chemical Analysis
SRPES	Spin-resolved Photoelectron Spectroscopy
UPS	Ultraviolet (excited) PES
ARUPS	Angle Resolved UPS
XES	X-ray (Photon) Emission Spectroscopy
XAS X-ray Ab.	sorption Spectroscopy
XMCD	X-ray magnetic circular dichroism
XMLD	X-ray magnetic linear dichroism

Investigation of <u>all kind of materials</u>: metals, oxides, organo-metallic systems (not shown: thin films, polymers, adsorbates,,,)

surface sensitive technique (electron escape depth)

XPS

- XPS is a very universal useful technique:
 - detection of almost all elements
 - core levels and valence bands are detected
 - determination of absolute atomic concentrations
 - valence state of ions deduced from chemical shifts (ESCA),
 - exchange interaction of the core hole with valence band
 - total DOS by XPS (and partial DOS by XES)
 - Spin resolved PES using circular polarized light or spin detectors

ANNALEN

DER

PHYSIK.

Band 17, 132 (1905)

6. Über einen die Erzeugung und Terwandlung des Lichtes betreffenden heuristischen Gesichtspunkt; von A. Einstein.

§ 8. Über die Erzeugung von Kathodenstrahlen durch Belichtung fester Körper.

Die übliche Auffassung, daß die Energie des Lichtes kontinuierlich über den durchstrahlten Raum verteilt sei, findet bei dem Versuch, die lichtelektrischen Erscheinungen zu erklären, besonders große Schwierigkeiten, welche in einer bahnbrechenden Arbeit von Hrn. Lenard dargelegt sind.³)

Nach der Auffassung, daß das erregende Licht aus Energiequanten von der Energie $(R/N)\beta v$ hestehe, läßt sich die Erzeugung von Kathodenstrahlen durch Licht folgendermaßen auffassen. In die oberflächliche Schicht des Körpers dringen Energiequanten ein, und deren Energie verwandelt sich wenigstens zum Teil in kinetische Energie von Elektronen. Die einfachste Vorstellung ist die, daß ein Lichtquant seine ganze Energie an ein einziges Elektron abgibt; wir wollen annehmen, daß dies vorkomme. Es soll jedoch nicht ausgeschlossen sein, daß Elektronen die Energie von Lichtquanten nur teilweise aufnehmen. Ein im Innern des Körpers mit kinetischer Energie

Photo effect

 $h\nu = E_{kin} - E_{bin}$ $E_{vac} = 0$

one electron type picture

electron mean free path

Fig. 1.2. Mean free path of electrons in metallic solids as a function of their energy. a: H. Kanter, Phys. Rev. B1, 522 (1970) (Electron transmission). b: D.E. Eastman, 32nd Physical Electronics Conference, Albuquerque, N. Mex. 1972 (UPS). c: J. W. T. Ridgeway and D. Haneman, Surface Sci. 24, 451 (1971); 26, 683 (1971) (AES). d: M. L. Tarng and G. K. Wehner, J. appl. Phys. 43, 2268 (1972) (AES). e: P. W. Palmberg and T. N. Rhodin, J. appl. Phys. 39, 2425 (1968) (AES). f: K. Jacobi and J. Hölzl, Surface Sci. 26, 54 (1971). g: R.G. Steinhardt, J. Hudis and M. L. Perlman, in: Electron Spectroscopy (D.A. Shirley, ed.) North Holland, Amsterdam (1972), p. 557 (XPS). h: M. Klasson, J. Hedman. A. Berndtson, R. Nilsson and C. Nordling, Physica Scripta 5, 93 (1972) (XPS). i: Y. Baer, P.F. Heden, J. Hedman, M. Klasson and C. Nordling, Solid State Comm. 8, 1479 (1970) (XPS). k: M.P. Seah, Surface Sci. 32, 703 (1972) (AES).

Experimental

Light sources:

XPS: Al Kα radiation (1486.7 eV), also monochromatised Synchrotron radiation with tunable energy

Electron detector:

High energy resolution, multi-channel, spin resolving

Sample preparation:

in situ (UHV) fracturing, evaporation,,, no sputtering!

small spot anlysis

Excitation process

Nickel Ni Atomic Number 28 Handbook of X-ray Photoelectron Spectroscopy

XPS and AES lines can be identified by varying the excitation energy

XPS analysis

Perkin-Elmer Corporation Physical Electronics Division

84

almost all elements are detectable, also quantitatively (sensitivity factors), determination of absolute atomic concentrations, and stoichiometries, $2p_{1/2}$ and $2p_{3/2}$ (LS coupling), 6eV satellite

chemical shift

chemical shift

 Mo^{6+} and Mo^{5+} ions in Sr_2FeMoO_6

reference compounds Mo⁶⁺ in MoO₃ Mo⁴⁺ in MoO₂ the Mo 3d states are split due to LS-coupling

exchange splitting

1s XPS spectra of paramagnetic molecules show a splitting due to the interaction of the 1s hole with the spin S of the "valence band"

XPS probes the final states with S $\pm 1/2$

3s splitting and charge transfer (CT)

in 3d transition metal oxides

Interaction of the 3s hole with the 3d electrons with spin S XPS probes the final state S $\pm \frac{1}{2}$ in well screened systems charge is transferred from O2p to 3d states plus spin-spin interactions

A, B with charge transfer (CT)C, D without CT (less screening)

3s splitting in TM oxides

valence band tDos and pDos

Co₂MnSn (Heusler alloy)

tDos (total densities of states) probed by **XPS pDos** (partial densities of states) probed by XES comparison with theory spin resolved small gap?

Detection of Spin Polarization

Mini Mottdetector (SPECS)

SPLEED detector (Omikron)

Kirschner et al.

Detection of Spin Polarization

A design to detect all three spin components together with the unpolarised signal.

D.J.Huang, P.D. Johnson, et al. Rev.Sci.Instr. **73**, 3778 (2002)

Spin resolved Photoelectronspectroscopy

Alvarado, Campagna and Hopster

Dietz and Kuhlenbeck (1984)

Campagna 1985

Dietz

SRPES from Fe 3s

HS: $2 S_z$ components LS: $1 S_z$ component

D.J. Huang et al. Rev.Sci.Instr.73, 3778 (2002)

Earlier work by:

F.U. Hillebrecht, et al. PRL65, 2450 (1990)

FIG. 3. Spin-resolved 3s photoemission of Fe thin films epitaxially grown on W(110) substrates. Linearly polarized synchrotron radiation with an energy 265 eV was used to excited the photoelectrons. The total energy resolution was 0.35 eV.

Z. Xu, et al.PRB51, 7912 (1995)

SRPES with cicularly polarized light from nonmagnetic metals

total intensities: $I(f_{5/2}) : I(f_{7/2}) = 3 : 4$ highly spinpolarized

FIG. 4. Spin-resolved Pt 4f photoemission excited circularly polarized from the EPU beamline. The degree of the light circular polarization is better than 90%. The total energy resolution was 0.35 eV.

D.J. Huang et al. Rev.Sci.Instr.73, 3778 (2002)

SRPES with circularly polarized light

Determination of the orbital moment of CoO using spin-resolved photoemission

Highlights ESRF 2000 G. Ghiringhelli et al.

The orbital moment is quenched

also above T_N !

Selected materials investigated by XPS

all kind of materials have been investigated by XPS, only a few examples will be shown in the following:

intermetallic compounds (Heusler alloys)
chalcogenide spinels (partly semiconducting)
organometallic compounds
(molecule based solids and magnetic molecules)
oxides (CMR compounds: manganites, double perovskites)

Heusler-Alloys

- discovered 1903 by F. Heusler
- ternary intermetallic alloy: X₂YZ
- L2₁ structure
- 4 interpenetrating fcc-lattices
- here investigated: X₂MnZ
 - X = Fe, Co, Ni, Cu
 - Z = Al,Si,Ga,In,Sn,Sb
- partly HMF-behavior
 - spin up: metal
 - spin down: insulator / semiconductor

Magnetic properties and spin polarization of Co₂MnSi Heusler alloy thin films epitaxially grown on GaAs(001)

W. H. Wang,^{1,2} M. Przybylski,^{1,3,*} W. Kuch,^{1,4} L. I. Chelaru,^{1,5} J. Wang,^{1,6} Y. F. Lu,¹ J. Barthel,¹ H. L. Meyerheim,¹ and J. Kirschner¹

Disorder in the Co/Mn sites can close the gap and also reduce the spin polarization.

Heusler-Alloys X₂MnZ

- **local magnetic** moment at the Mn-atom $2,3\mu_{\rm B} - 4,4 \mu_{\rm B}$
- Mn3d ↑ : delocalised band; hybridisation with the X 3d electrons
- Mn3d ↓ : localised unoccupied states
- magnetic coupling by the Z element

L2₁ Heusler-Alloys with Mn or Cr

Fe₂MnZ

 Co_2MnZ

Material	Struktur	a in nm	μ_{Mn} in μ_B	$\mu_X \text{ in } \mu_B$	$\mu_{ m eff} \ { m in} \ \mu_B$	T_c in K
Fe ₂ MnAl ^a	$L2_1$	0.567	2.35	0.16		
$\rm Fe_2MnSi^a$	$L2_1$	0.559	2.63	0.20		214
Co_2MnAl	$B2/L2_{1}$	0.5756	3.01	0.5	4.01	693
Co ₂ MnGa	$L2_1$	0.577	3.01	0.5	4.05	694
$\rm Co_2MnSn$	$L2_1$	0.6	3.58	0.75	5.08	829
$Co_{1.5}MnSb$	$L2_1$	0.5929	3.75	0.75	4.9	600
Ni_2MnIn	$L2_1$	0.6069	3.43°	< 0.3	4.40 ^b	314
Ni_2MnSn	$L2_1$	0.6053	3.43°	< 0.3	4.05 ^b	360
Ni_2MnSb	$L2_1$	0.6004	3.13°	< 0.3	3.27*	365
Cu ₂ MnAl	$L2_1$	0.5949	3.49	< 0.1	3.73	603
Rh_2MnSn^c	$L2_1$	0.6252	$3.77/(3.65)^d$	$0.38(0.24)^d$	$3.1/(4.51/4.09)^d$	412
Rh_2MnGe^d	$L2_1$	0.5993	3.61(3.40)	0.37(0.23)	4.36(3.81)	450
Pd ₂ MnAl	B2	0.6165	4.4	< 0.1	4.4	$T_N = 240$
Pd_2MnSn	$L2_1$	0.638	4.14 / 3.78°	< 0.1	4.26	189
Pd_2MnSb	$L2_1$	0.6419	$4.4 \ / \ 3.83^{e}$	< 0.02	4.4	247
$NiMnSb^{f}$	$C1_b$	0.5913	4.0	< 0.01	4.08	756
Fe_2CrAl^g	$L2_1$	0.5805			1.67	246
$\mathrm{Co}_2\mathrm{CrAl}^g$	$L2_1$	0.5887			1.55	334

semi-Heusler

A₂CrAl

Mn2p core levels

Material	Struktur	a in nm	$\mu_{\mathrm{Mn}} \ \mathrm{in} \ \mu_B$
Fe ₂ MnAl ^a	$L2_1$	0.567	2.35
Fe ₂ MnSi ^a	$L2_1$	0.559	2.63
Co ₂ MnAl	$B2/L2_{1}$	0.5756	3.01
Co ₂ MnGa	$L2_1$	0.577	3.01
Co_2MnSn	$L2_1$	0.6	3.58
Co _{1.5} MnSb	$L2_1$	0.5929	3.75

$Mn2p_{3/2}$ splitting vs. μ_{Mn}

Mn 2p photoelectron spectra

A comparison with atomic spectra demonstrates the localized nature of the Mn 2p states in MnO multiplet effects need to be included in calculations

Local moments also in Heuslers!

Ph. Wernet et. al. Phys. Rev. B (2001) chalkogenide spinels

Fe_{1-x}Cu_xCr₂S₄

 \blacksquare Fe²⁺Cr³⁺₂S²⁻₄

 $\blacksquare \operatorname{CuCr}_2 \operatorname{S}_4 : \operatorname{Lotgering} : \operatorname{Cu}^{1+} (\operatorname{Cr}^{3+}, \operatorname{Cr}^{4+})$ Goodenough : $\operatorname{Cu}^{2+} (\operatorname{Cr}^{3+})$

$$\blacksquare Fe_{0.5}Cu_{0.5}Cr_{2}S_{4}: Cu^{1+} Fe^{3+} / Cr^{4+} / S$$

Ramirez et al., Nature, **386**, 156 (1997)

Chalkogenide spinels prepared by V. Tsurkan (Kishinau)

FeCr₂S₄

Fe_{0.5}Cu_{0.5}Cr₂S₄

- the VB states below E_F are dominated by *Cr 3d*;
- minority-spin Fe 3d states produce a clear Fermi step in spectrum;
- the *Fe 3d* states are more localized than *Cr 3d* states;
- the Fe 3d and S 3p states are represented at slightly higher $E_{\rm B}$.

contribution from the *Cu*3*d* states just below *Cr* 3*d*.

Cu 2p & 3s XPS spectra

 \Rightarrow 3d¹⁰ configuration of the Cu⁺ ion
Fe 2p & S 2p XPS spectra

charge transfer from S²⁻ to Fe^{3+} : Fe^{2+}

CuCr₂Se₄

• the same Cr 3s exchange splitting ΔE_{ex} (~ 4 eV) for all compounds similar values for the local magnetic moments of Cr \clubsuit Cr ³⁺ ions

Cr 2p XPS spectra

 μ_{loc} (Cr)= 2.9 - 3.0 $\mu_B \rightarrow \Delta E(Cr 2p)=0.95-1.0 \text{ eV}$ \rightarrow localised character of the magnetic moments for Cr³⁺ in a 3d³ configuration.

Summary: chalkogenide spinels

- CuCr₂Se₄: monovalent Cu ions = Lotgering model
- Fe_{0.5}Cu_{0.5}Cr₂S₄: Cu¹⁺ mainly affects the Fe and S ions
- well-resolved Cr 2p splitting for Cr-chalcogenide spinels
- ACr₂X₄ : the same Cr 3s splitting ♀ Cr³⁺ (3d³)
- XPS & XES data -- excellent agreement with band structure calculations

organometallic materials

XPS on organometallic materials

Erlangen

di-cyanamides

molecule based solids

ferric wheel Magnetic molecules Synthesized by R.Saalfrank et al.

ferric star

Dicyanamide materials M[N(CN)₂]₂ M = Mn, Fe, Ni, Cu

- each metal ion is surrounded by six nitrogen atoms in a distorted (axially elongated) octahedral geometry
- the rutile-like structure consists of rhombus-shaped units which adopt a chain alignment parallel to the *c* axis
- tilting of the elongated octahedra in the crystallographic *ab* plane

Dicyanamide materials M[N(CN)₂]₂ M = Mn, Fe, Ni, Cu

Crystallographic data - isostructural series

Compound	${\rm Mn}[{\rm N}({\rm CN})_2]_2$	$Fe[N(CN)_2]_2$	$Co[N(CN)_2]_2$	$Ni[N(CN)_2]_2$	$\mathrm{Cu}[\mathrm{N}(\mathrm{CN})_2]_2$
Space group	Pnnm	Pnnm	Pnnm	Pnnm	Pnnm
Interatomic distances and angles at:					
	4.6 K	1.6 K	$1.6 { m K}$	1.6 K	-
M–M	6.0657(1)	5.9670(1)	5.9158(1)	5.8634(1)	_
M–N(2)–C	119.2(1)	119.6(1)	120.6(1)	121.0(1)	-
N(2)-C-N(1)	175.2(3)	175.5(2)	175.1(2)	174.6(2)	_
C(2)-N(1)-M	158.5(2)	158.9(1)	159.6(1)	159.5(1)	_
α	140.4(1)	141.7(1)	142.3(1)	142.6(1)	_
M-N(1)	2.189(1)	2.126(1)	2.093(1)	2.053(1)	_
M-N(2)	2.291(2)	2.206(1)	2.156(2)	2.129(2)	_
Δ	1.047	1.038	1.030	1.037	_
β	25.2(2)	26.4(2)	27.5(2)	27.6(2)	_
Magnetic ordering type					
	canted AFM	canted AFM	collinear FM	collinear FM	para
	$(2\phi \approx 10^{\circ})$				_
Ordering temperature					
	16 K	_	9 K	21 K	_
Local magnetic moments of 3d–ions					
	$4.61 \ \mu_B$	$4.23 \ \mu_B$	$2.67 \ \mu_B$	$2.21 \ \mu_B$	$1.05 \ \mu_B$

change over

unit cell

C.R. Kmety *et al.* Physical Review B, 62 5576-5588 (2000)

Dicyanamide Mn[N(CN)₂]₂ 3s splitting

J" dominant super exchange path

 $\begin{array}{l} \text{Magnetic moments on Mn:} \\ 4.65 \; \mu_{\text{B}} / \text{atom Mn} [\text{N}(\text{CN})_2]_2 \\ 4.45 \text{-} 4.79 \; \mu_{\text{B}} / \text{atom MnO} \end{array}$

• the magnetic moment per Mn atom is slightly reduced as expected from a Mn^{2+} (3d⁵) ion due to a reduction in spin polarization driven by Mn(3d) \Leftrightarrow N(2sp) interaction.

Dicyanamides transition metal 2p core level spectra

Valence bands of Mn[N(CN)₂]₂

D.O.Demchenko et al. Phys. Rev. **B 69**, 205105(9) (2004)

Valence bands ferric wheel

Fe²⁺L and Fe³⁺

S.G. Chiuzbaian et al. Surf. Sci. 482-485, 1272 – 1276 (2001) A.V. Postnikov et al. J. Phys. Chem. Solids **65/4**, 813-817 (2004)

ferric star molecules

- the top of the valence band is primarily derived from Fe 3d and O 2p states
- in the middle part the structures result from hybridization of the C 2p, N 2p, C 2s and N2s states
- at the bottom of the valence band we have the O2s states

Colossal Magnetoresistance Materials Characterized by X-ray Spectroscopic Methods

M. Neumann, K. Kuepper, H. Hesse, E. Burzo¹, I. Balasz¹, V.R. Galakhov²

¹ Babes Bolyai University, Cluj-Napoca, Romania

² Russ. Acad. of Sciences, Yekaterinburg

Outline

- Introduction
- Methods: XPS, XES, XAS, XLD, XMCD, RIXS
- CMR materials: © La_{1-x}A_xMn_{1-y}TM_yO₃
 © Sr₂FeMoO₆
 (© spipells A Cr X)
 - (\odot spinells ACr₂X₄)
- Summary

colossal magneto-resistance (CMR)

Science 292, 1509 (2001)

- The Magneto Resistance is defined as the change of the resistance by applying an external magnetic field
- changes of 100% to several 1000% have been reported
- different applications

CMR materials

Colossal magnetoresistance effect (CMR)				
© La _{1-x} A _x MnO ₃ ₽	Science 264 , 413 (1994)			
	Double exchange model (MIn^{3+} , MIn^{4+}) (Zener, PR 81, 440 (1955))			
	Electron- phonon interaction (Millis et al., PRL 74, 5144 (1995))			
© Sr₂FeMoO ₆	high $T_c = 420K$			
	low fields for CMR (Kobayashi et al., Nature 395, 677 (1998))			

 $OFe_{1-x}Cu_xCr_2S_4$; (ACr₂X₄) ♥ Nature 387, 268 (1997)

 $La_{2-2x}(Sr, Ca, Sn)_{1+2x}Mn_{2}O_{7} (Nature 380, 141 (1996)); Sr_{2-x}Nd_{1+x}Mn_{2}O_{7} (JPCM 8, L 427 (1996)); \\ Tl_{2}Mn_{2}O_{7}(Nature 379, 53 (1996), Science 273, 81 (1996)); Eu_{14}MnBi_{11}(PRB 57, R 8103 (1998)); \\ \end{cases}$

Introduction

➤The 3d transition metal oxides exhibit a rich variety of electronic and magnetic properties

➤ This is due to the intricate interplay between the <u>charge</u>, <u>magnetic and orbital</u> degrees of freedom

Manganese perovskites: La_{1-x}A_xMnO₃

In perovskites like LaMnO₃ a cooperative Jahn-Teller distortion, i. e. a collective elongation (compression) of one crystal axis may lead to a preferential occupation of a certain type of 3*d* orbital -> orbital ordering

Methods

- X-ray Photoelectron Spectroscopy (XPS) \Rightarrow Osnabrück
- X-ray Emission Spectroscopy (XES), X-ray Absorption Spectroscopy (XAS)
 Resonant Inelastic X-ray Scattering (RIXS)
 X-ray linear dichroism (XLD)
 X-ray magnetic circular dichroism (XMCD)
- \Rightarrow ALS, Beamline 8.0.1, SXF and 4.0.2 (XMCD)
- \Rightarrow ELETTRA , Beamline BACH, COMIXS (CCD detector)
- \Rightarrow BESSY II, Beamline U-41 PGM, ROSA

Mn 3s XPS spectra of Mn oxides

Intensity (arb. units)

La_{1-x}Ba_xMnO₃ : XPS VB & XES

• Strong hybridization of the Mn 3d and O 2p states

La_{1-x}A_xMnO₃ (A=Ba,Ca): metal to insulator transition: XPS and RIXS

$(La,Ba)Mn_{1,x}Co_{x}O_{3}$

Ba 5p

10

VB

5

0

La_{1-x}Ba_xMn_{1-y}Co_yO₃

La_{7/8}Sr_{1/8}MnO₃: X-ray Linear Dichroism and Orbital Ordering

VOLUME 92, NUMBER 8

PHYSICAL REVIEW LETTERS

week endin 27 FEBRUARY

Orbital Ordering in La05Sr15MnO4 Studied by Soft X-Ray Linear Dichroism

D. J. Huang,^{1,2} W. B. Wu,^{2,1} G. Y. Guo,^{3,1} H.-J. Lin,¹ T. Y. Hou,¹ C. F. Chang,¹ C. T. Chen,^{1,3} A. Fujimori,⁴ T. Kimur: H. B. Huang,⁶ A. Tanaka,⁶ and T. Jo⁶

¹National Synchrotron Radiation Research Center, Hsinchu 30077, Taiwan
 ²Department of Electrophysics, National Chiao-Tung University, Hsinchu 300, Taiwan
 ³Department of Physics, National Taiwan University, Taipei 106, Taiwan
 ⁴Department of Physics and Department of Complexity Science and Engineering, University of Tokyo, Tokyo 113-0033, Ja

⁵Department of Complexity Science and Engineering, Ortevisity of 108,96, 108,96 113-00033, ad ⁵Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan ⁶Department of Quantum Matters, ADSM, Hiroshima University, Higashi-Hiroshima 739-8530, Japan

(Received 8 May 2003; revised manuscript received 17 November 2003; published 26 February 2004)

We found that the conventional model of orbital-ordering of $3x^2 - r^2/3y^2 - r^2$ type in the e_g states of La_{0.5}Sr_{1.5}MnO₄ is incompatible with measurements of linear dichroism in the Mn 2*p*-edge x-ray absorption, whereas these e_g states exhibit predominantly cross-type orbital ordering of $x^2 - z^2/y^2 - z^2$. LDA + U band-structure calculations reveal that such a cross-type orbital-ordering results from a combined effect of antiferromagnetic structure, Jahn-Teller distortion, and on-site Coulomb interactions.

Layered manganite LaSrMnO₄: $(3z^2-r^2)$ - orbital ordering (PRL 92, 087202)

La_{7/8}Sr_{1/8}MnO₃: X-ray Linear Dichroism and Orbital Ordering

K. Kuepper et al. J. Phys. Chem. B109, 15667 (2005)

$La_{7/8}Sr_{1/8}MnO_3$: XMCD

Applying the sum rules reveals a spin moment of +3.8 μ_B and an orbital moment of approx. -0.3 μ_B \rightarrow total moment 3.5 μ_B .

Sr₂FeMoO₆

Y. Tomioka et. al. Phys. Rev. B 61, 422 (2000)

- ✤ ordered double perovskite
- Description of the second s
- ✤ Fe³⁺ and Mo⁵⁺ build up
- antiferromagnetic coupling
- ✤ shows colossal magneto-resistance
- (CMR) at room temperature

- possible application as magnetic storage
- ♦ different theoretical approaches lead to different interpretation about the correlation / hybridization mechanism (Phys. Rev. B 66, 035112 (2002), Phys. Rev. B 67, 085109 (2003))

Sr₂FeMoO₆: magnetic measurements

XPS survey spectrum of Sr₂FeMoO₆

Sr₂FeMoO₆: XPS core levels

Intensity (arb. units)

Sr₂FeMoO₆: XPS, influence of sputtering

Sr₂FeMoO₆: Mößbauer data

variance	lattice	δ_{Rh}	$eQV_{ZZ}/8$	Θ	Г	В	P
		in $\rm mm/s$	in mm/s $$	in $^\circ$	in mm/s $$	in $10^{-1}\mathrm{T}$	in $\%$
$\chi^2 = 0.88$	SM1	0.62	-0.012	125	0.38	471	73.61
	SM2	0.27	-0.063	67	0.31	503	19.52
	L1	-0.35	-	-	0.29	-	4.47
	L2	1.66	-	-	0.30	-	2.40

• Mößbauer data fitted with two sextets and two singlets

• ϵ_{SM1} : 73.6 % bulk B_{hf}=47.1T \rightarrow close to Fe 2+

• ϵ_{SM2} : 19.5 % grain boundaries B_{hf}=50.3T \rightarrow close to Fe 3+

• ϵ_{L1} and ϵ_{L2} : antisite defects

•Electron hopping Fe - Mo valence fluctuations Fe²⁺/Fe³⁺

ME gives averaged B_{hf} XPS gives a snap shot:

70 % Fe 2+ and 30 % Fe 3+

Sr₂FeMoO₆: XPS valence band and calculations

Saha-Dasgupta et al. (Phys. Rev. B 64, 064408 (2001)) , \rightarrow strong correlation

Sr₂FeMoO₆: XPS, XES, band structure

- comparison of the XPS and XES spectra with new band structure calculations, use of the lattice parameters of the best sample as input parameter!
- Perdew Wang GGA approximation (calculations performed by <u>M. Kadiroglu</u> and <u>A. V. Postnikov</u>)
- good agreement between the experimental and the calculated partial densities of states
- the total density of states have been derived by weighting the partial densities of states with help of the cross sections, good agreement with the experiment is achieved

Sr₂FeMoO₆: XPS, XES, band structure

- comparison of the XPS and XES spectra with new band structure calculations, Perdew Wang GGA approximation
- good agreement between the experimental and the calculated partial densities of states
- the total density of states have been derived by weighting the partial densities of states with help of the cross sections, good agreement with the experiment is achieved

K. Kuepper et al. J. Phys.: Condens. Matter **17**, 4309 -4317 (2005)

CMR compounds Summary

\blacksquare La_{1-x}Sr_xMnO₃: x < 0.3, the doping holes have mainly O 2p character

- high value of the Mn 3s splitting (5.3 eV) : the HS state

La_{1-x} (Sr,Ba)_x MnO₃ : strong hybridization of the TM 3d and O 2p states

■ La_{7/8}Sr_{1/8}MnO₃: strong indications for a cross type (x²-z²)/ (y²-z²) orbital ordering in the cooperative Jahn Teller distorted phase

EXAMPLE 1 XMCD reveals a total magnetic moment of 3.5 μ_B

■ Sr₂FeMoO₆, around 65% Fe²⁺ and Mo⁶⁺, 35% Fe³⁺, Mo⁵⁺ contributions

Sr₂FeMoO₆, evidence for moderate correlation

Mößbauer reveals about 20% grain boundaries, 4% anti-sites from XRD

Acknowledgements

- G. Borstel, A.V. Postnikov, Univ. Osnabrück
- K.C. Prince, M. Matteucci ELETTRA, Italy
- the group of Prof. F. Parmigiani, Trieste
- Ya.M. Mukovskii, Moscow, Russia
- A. Winiarski, Univ. Katowice, Poland
- •helpful assistance at ALS, BESSY and ELETTRA

photo electron emission process (I)

Perturbation theory

Transition probability:

$$W = \frac{2\pi}{\hbar} |\langle \Psi_F | \Delta | \Psi_0 \rangle|^2 \, \delta \left(E_F - E_0 - \hbar \omega \right)$$
$$\Delta = \frac{e}{2mc} \left(A \cdot p + p \cdot A \right) - e\phi + \frac{e^2}{2mc^2} A \cdot A$$

A : vector potential of the incoming light ϕ : scalar potential

 $A \cdot A$ to be neglected for one photon processes $\nabla A = 0 \rightarrow$ no nonlocal field effects ϕ vanishes with Coulomb gauge $\lambda \gg$ atomic distances (UV-range) $\rightarrow A = A_0 e^{i\vec{q}\vec{r}} \approx A_0$ (dipole approximation) (Fresnel-equations generally well applicable)

Final state $\langle \Psi_F |$ consists of ion + electron!

photo electron emission process (II)

Intensity:

 $\sum_{k,e} \text{Summations on all possible ion states} \\ \Phi_e \text{ Wave function of the emitted electron (totally symm.) (LEED)} \\ \Delta \text{ one electron dipole operator} \sim A_0 \cdot p \\ \Phi_e, \Phi_k \text{ one electron wave functions} \\ ^{N-1}\Psi_e \text{ ion state} \\ a_k \text{ annihilation operator} \\ \Psi_i \text{ neutral groundstate} \end{cases}$

semi-Heusler NiMnSb

core level studies

FeStar

The absoprtion measurements on the FeStar molecule gives us also Fe2⁺ which is in a good agreement with the XPS data.

core level studies

CrStar

