Magnetooptical microscopy

J. McCord - IFW Dresden

Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden

Why domain observation?

- magnetic properties
 - hysteresis measurements
 - coercivity H_c, anisotropy field H_k
 - saturation magnetization B_s, remanent magnetization B_r
- but ...
 - local effects
 - domain walls
 - patterned samples
 - multilayers

Domain observation - wish list

- image magnetic microstructure with lateral resolution in the range from nanometer up to millimeter
- directly image magnetization
- element specific
- image depth sensitive
- imaging of working devices through non-magnetic covering layers or substrate
- image while applying arbitrary magnetic fields
- allow sample manipulation (heating, cooling, stressing etc.)
- follow magnetization dynamics
- minimal interaction with magnetization

Magneto-optical microscopy

- image magnetic microstructure with lateral resolution in the range from nanometer up to millimeter
- ✓ directly image magnetization
- element specific
- ✓ image depth sensitive
- ✓ imaging of working devices through non-magnetic covering layers or substrate
- ✓ image while applying arbitrary magnetic fields
- ✓ allow sample manipulation (heating, cooling, stressing etc.)
- ✓ follow magnetization dynamics
- ✓ minimal interaction with magnetization

What is this about?

- optical microscopy
- magneto-optics

- magneto-optical microscopy (incl. time-resolved)
 - transmission microscopy Faraday effect
 - wide-field and scanning Kerr microscopy
 - Voigt-effect microscopy
 - MOLF microscopy (indirect)

Magneto-optical effects

... change of polarization of light due to magnetism ...

Magneto-optical effects - history

- Michael Faraday (1791-1867)
- "Today worked with lines of magnetic force, passing them across different bodies (transparent in different directions) and at the same time passing a polarized ray of light through them and afterwards examining the ray by a Nichol's Eyepiece or other means."
- small change of polarization plane due to magnetic interaction in transmission. - ~ M

Magneto-optical effects - history

• J. Kerr (1824-1907)

- small change of polarization plane due to magnetic interaction in reflection
- "Circular birefringence" ~ M

John Kerr

W. Voigt (1850 - 1919)

even smaller change of polarization plane due to magnetic interaction.

"Linear birefringence" - ~ M^2

Dielectric law (cubic)

- E: electric vector of light wave
- e: dielectric tensor
- D: dielectric displacement vector
- m: magnetization vector components (cubic crystal, isotr.)
- Q, B₁, B₂: complex material constants

Dielectric law (II) - isotropic case

Overview - Kerr and Faraday

from A. Hubert, R. Schäfer; Magnetic domains ...

polar ||

longitudinal ||

transverse

in-plane sensitivity

out-of plane sensitivity + in-plane sensitivity

out-of plane sensitivity

Polar Kerr effect

Schäfer; Magnetic domains ...

- perpendicular illumination
- sensitive to polar or out-of-plane magnetization component m

Longitudinal Kerr effect

note: still polar effect included from A. Hubert, R. Schäfer; Magnetic domains ... mх

- non-perpendicular illumination
- oblique plane of incidence
- sensitive to magnetization component m parallel plane of incidence

Out-of-plane vs. in-plane sensitivity

- M_{polar} x E > M_{longitudinal} x E
- diffraction index n_{Metal} ≈ 3 (Fe)

polar magnetization much easier to measure

Practical MOKE (longitudinal Kerr effect)

adapted from R. Schäfer

Detection (wide-field microscopy)

- analyzer not perpendicular to polarizer
- domain contrast

Voigt effect vs. Kerr effect

R. Mattheis, G. Quednau, phys. stat. sol. (a) 172 (1999) r7

"Add-on" to Kerr effect

- not easy to separate
- Voigt signal small relative to Kerr signal (6% from FFT)
- complementary additional information possible

Penetration of light - depth sensitivity

depth sensitivity adjustable through phase shift

Iayer sensitive imaging (?)

Summary on magneto-optical effects

- Faraday effect
- magneto-optical Kerr effect MOKE
 - proportional to (projection of) magnetization
 - in-plane and out-of-plane sensitivity
 - "surface" sensitive (adjustable)
- Voigt effect

... microscope schemes and resolution ...

Wide-field microscope

polarization elements missing

- 1-step image acquisition
- camera based

www.nikon.com

Scanning microscopy

- "step-by step" image acquisition
- resolution
 determined also
 by scanning
 procedure
- wide range of detectors
 possible

www.zeiss.com

On the resolution of optical <u>microscopy</u> (E. Abbe, 1840-1905)

- diffraction limited image formation
- resolution determent by the constructive interference
- diffraction limited
 - f(λ)
 - f(opening of objective)

Lateral resolution - diffraction limited

object 1 + object 2

- distance > λ
- constructive interference

Lateral resolution - diffraction limited

- narrowing of object 1 + object 2
- reduction of diffraction maxima
- limited through λ and opening

Lateral resolution of a microscope

- λ: wavelength of imaging radiation
- n: index of refraction of medium between point source and lens, relative to free space
- O: half the angle of the cone of light from specimen plane accepted by the objective
- n sin Θ is expressed as NA (numerical aperture)

Near field imaging (SNOM)

- overcoming the diffraction limit
 - e.g. aperture-type SNOM
 - resolution ~ nm (demonstrated 100 nm)

detection

Summary on optical microscopy

- 2 types
 - wide-field microscope
 - scanning microscope
- resolution limited through
 - wavelength λ
 - NA of objective
 - n (1.5 for immersion objectives)

(magnification not important)

best around 200 nm

Practical magneto-optical microscopy

... wide (bright) field imaging ...

Overview

different types of magneto-optical microscopy

"Ingredients"

- (high intensity) light source
- polarized light
 - polarizer or polarized light source
 - analyzer
- imaging optics
 - objective lens
 - polarization microscope
- image detection
 - photo diode (scanning)
 - camera system

Common elements - wide field imaging

(very simple) - polarization optics

Faraday microscopy

Faraday example - garnet film

from A. Hubert, R. Schäfer; Magnetic domains ...

- polar sensitivity, perpendicular anisotropy
- meta-stable domain structure dependent on magnetic history
 - a) 90° (in-plane) maze pattern
 - b) 20° band domains
 - c) 1° bubble lattice
 - d) 0° mixed pattern

Summary on Faraday microscopy

- direct method
 - limited to optical transparent materials (transmission)
 - averages over sample thickness
 - low lateral resolution
 - used as indicator film (next...)

Magneto-optical indicator film (MOLF)

- reflection non-transparent samples (magnetic thin films)
- indirect method use of garnet film as an indicator of magnetic stray fields
Magneto-optical indicator film (MOLF)

- transparent magnetic garnet film (thick, epitaxial grown on non-magnetic garnet film)
- Al mirror due to reflection mode
- imaging of magnetic charges
 - domain walls or "ripple" in thin films
 - patterned magnetic samples

MOLE - imaging of magneto-elastic films

images courtesy E. Quandt, CAESAR

Magnetization reversal by magnetic field

Magnetization reversal by applied tensile stress

2 mm

- magnetization reversal of TbFe/FeCo multilayers by magnetic field H and applied tensile stress σ
 - ripple and domain wall visible

MOLE - exchange biased films

V. Nikitenko et al., Phys Rev. Lett. 84 (4), 765-768 (2000)

- Ni₈₁Fe₁₉-Fe₅₀Mn₅₀ (11 nm ... 18 nm/ 30 nm)
- asymmetric domain nucleation and movement for forward and backward loop branch

Summary on MOLF

- indirect method
 - detection of magnetic charges of ferromagnetic material's surface
 - metalized transparent epitaxial garnet layer as detection film
 - low resolution due to thickness of garnet film and "micromagnetic" feature size in garnet

Practical wide-field Kerr microscopy

... shining light on magnetic metals ...

Illumination path (polar)

- non-transparent samples from bulk to thin films
- perpendicular incidence of light
- direct method surface imaging

Example polar image (textured Nd₂Fe₁₄B)

images courtesy O. Gutfleisch, IFW Dresden

10 µm

sintered magnet

- permanent magnet
- thermally demagnetized magnetic state
- nominal c-axis perpendicular to imaging plane
 - small variations in domain structure

Illumination path (longitudinal+polar)

- in- and out-of-plane sensitivity (!)
- direct method surface imaging

Contrast enhancement - Ni₈₁Fe₁₉ (8 nm)

- magnetic contrast enhancement (low longitudinal contrast)
 - difference image background subtraction
 - eliminate non-magnetic contrast
 - enhance domain contrast
 - averaging improvement of signal-to-noise ratio

On magnification - field of view

... from mm to *µ*m ...

Longitudinal Kerr from mm ...

image courtesy R. Schäfer, IFW Dresden

- Fe-Si3% transformer steel
- nominal in-plane easy axis of magnetization aligned vertically
- 3 grains with different degree of disorientation

... polar Kerr down to µm (I)

B. Argyle, J. McCord

Magnetic Storage Systems Beyond 2000/ Nato Science Series: 11: Mathematics, Physics and Chemistry, vol. 41 ed. G.C. Hadjipanayis (2001)

real device!

- Iongitudinal recording head pole-tip during write excitation
- enhanced polar magnetization at write gap between P1 and P2

... down to the sub- μ m ...

High resolution - gap distance 200 nm

Mout-of-plane

- imaging of micron sized pole-tip (again)
- determination of M_{out-of-plane} (@30 mA write current)

... more on lateral resolution...

J. McCord, T. Schmitte, et al., I EEE Transactions on Magnetics 39, 2687-2689 (2003) K. Theis-Bröhl, B. P. Toperverg, et al., Phys. Rev. B 72, 020403(R) (2005)

(comparison with polarized neutron scattering)

- Fe₅₀Co₅₀ stripes
 - varying width down to 1.7 μ m
 - sub-µm ripple domains
- interacting domains across stripe border due to magnetostatic interaction
- strong dependence on magnetic field history

... sub-µm imaging.

together with M. Kläui, University Konstanz

 $0.5 \ \mu m$ wide NiFe stripes

- head-on-domains in NiFe wires (20 nm x 500 nm)
 - aligned in vertical field

(current induced domain wall motion)

Magnetization reversal in Co-wires

together with B. Hausmanns, University Duisburg

20 μm 8 μm 2 μm 0. 55 μm 0.15 μm

40 µm

4 μm 1.1 μm 0.3 μm

- measurement of magnetic properties (H_c)
- head-on domain wall motion through stripes (small width w)
- domain buckling (not shown)

Summary on practical resolution

- demonstrated resolution close to theoretical resolution
- sub µm imaging "easily" achievable

Magnetic multilayers ...

... from thick to thin, from nontransparent to transparent ...

Thick films - CoFeSiB/SiO₂/CoFeSiB

together with M. Frommberger, CAESAR

 determination of magnetic states in hidden layer from "micromagnetics"

known anisotropy axis (microinductors)

Domain structure in buried layers

R.S. Beach, J. McCord, et al., APL 80 (24), 4576-4578 (2002)

- coupled "free layer" acting as a detection layer
- two domain types evident

Asymmetric reversal - exchange bias

J. McCord, R. Mattheis, et al., JAP 93 (9), 5491-5497 (2003)

recoil branch

- exchange biased Co₉₀Fe₁₀ (20 nm) / I r₂₃Mn₇₇ (10 nm)
- imaging through I rMn layer
- observation of loop and domain asymmetry

Complementary Voigt and Kerr imaging

J. McCord, A. Hubert et al., I EEE Transaction on Magnetics 29, 2735-2737 (1993)

Voigt effect $\sim M^2$

Kerr effect ~M

- Fe/Al/Fe (10 nm/3 nm/10 nm) magnetic bi-layer structure
- mixed alignment of magnetization low coupling
- determination of parallel and orthogonal alignment of M

Layer sensitive imaging in Fe bi-layers

R. Schäfer, J. Magn. Magn. Mat., 148, 226-231 (1995)

ferromagnetic coupling: 90°-coupling

bottom layer

- Fe/Cr/Fe (15 nm/x/15 nm)
- identification of
 - ferromagnetic coupling (left)
 - 90°-degree or biquadratic coupling (right)

Bi-layer magnetization reversal

MOKE curve

NiFe domain switching

- Co/Cu/Ni₈₁Fe₁₉ (5 nm/5 nm/50 nm)
 - top Co layer both layers visible
 - magneto-static Néel wall interaction charge compensation
 - regular and irregular domain walls

Layer-by-layer imaging (degaussed)

top layer

mixed Kerr signal

bottom layer

top Co layer

Co/Cu/Ni₈₁Fe₁₉ (5 nm/5 nm/50 nm)

- complicated domain structure and 360° walls
- bottom Permalloy layer
 - "modulated" 180° wall
 - magneto-statically induced variation inside the domains

Summary on multilayers

- magnetization in thin film multilayers resolvable
 - imaging of buried layers
 - imaging through non-transparent covering layers
 - layer-by-layer imaging (thin films bi-layer)

... magnetostrictive materials, stress induced reversal ...

Alignment of magnetization in FeSi

images courtesy R. Schäfer, IFW Dresden

initial state

under tensile stress

- transformer steel $\lambda_{100} > 0$
- domain alignment through application of stress

Patterned FeCoSiB discs (0.5 µm)

S. Glasmachers, M. Frommberger, J. McCord, E. Quandt, phys. stat. sol. (a) 201, 15, 3319-3324 (2004)

- stress induced K_u alignment in magnetoelastic sensor elements
- switch from branched to regular closure domains (f(H_k))

Stress induced magnetization reversal

J. McCord, M. Frommberger et al., JAP 95, 6861-6863 (2004)

 H_{k}

magnetoelastic sensors

no field applied!

- CoFe/CoB (7.7 nm/2.3 nm)₂₀₀ multilayers
- completely different domain (wall) behavior

Domain analysis - stress induced reversal

J. McCord, M. Frommberger et al., JAP 95, 6861-6863 (2004)

90°-wall network

- similar to cross-tie walls
- preferred 90°-wall alignment
- stress energy minimization film substrate interaction

Stress relaxation in magn. films – low λ_{s}

J. McCord., JAP 95, 6855-6857 (2004)

- edge domain structures in Ni_{80.0}Fe_{20.0} ... Ni_{82.5}Fe_{17.5} patterns
- thickness 2 µm
- domain structure determined by stress relaxation effects

Relaxation – comparison high vs. low λ_s

J. McCord., JAP 95, 6855-6857 (2004)

- no regular closure domain structures in square elements
- Ni₈₂Fe₁₈ edge curling walls
- Ni₄₅Fe₅₅ anisotropy patterning

Stress and domains in magnetic thin films

internal compressive film stress, $\lambda_s > 0$

- (Co₅₀Fe₅₀/SiO₂)₅ multilayer, magnetic thickness 500 nm
- compressive stress induced magnetization ripple

Stress and domains in magnetic thick films

J. McCord, J. Westwood, IEEE Transactions on Magnetics 37, 1755-1757 (2001)

10 µm

- stripe domain development in sputtered Ni₈₂Fe₁₈ films (2 μm)
 - simultaneous occurrence of weak and strong stripe domains during reversal
 - weak stripe domains not visible in longitudinal image
Summary on "stress"

 observation of stress induced reversal (stress jig - sample holder)

observation of stress effects

intrinsic stress

general and lateral

... examples from thin films ...

Domain walls in thin films

J. McCord, J. Westwood, Journal of Applied Physics 87, 6502-6504 (2000)

- different kind of domain walls in thin films (FeN)
- domain wall transformations with thickness, stack, and field

20 *µ*m

- top layer magnetization
- bottom layer magnetization

FeN (50 nm)/ Al₂O₃ (5 nm) / FeN (50 nm)

Domain walls in low coupled bilayer films

Domain walls asymmetry in EB bi-layers

J. McCord, submitted

0 nm

- NiFe(30 nm)/NiO
 (0 nm, 5 nm, 50 nm)
- change in cross-tie period ~ effective anisotropy
- asymmetric domain wall structure

30 nm

Patterned samples ...

... including magnetically patterned samples ...

Reversal in patterned elements

Ni₈₁Fe₁₉ 200 nm

- residual vertical anisotropy
 - domain wall motion with increasing field
 - concertina development and breakdown with again decreasing field

Multi-step reversal in pointed elements

- Ni₈₁Fe₁₉ elements (160 nm)
- "single domain" behavior (large size!)
- element by element switching

Opposite exchange bias

J. McCord, K. Theis-Bröhl, et al., JAP 97, 10K102 (2005)

- Si/SiO₂/Cu(30nm)/Ir₁₇Mn₈₃(15nm)/Co₇₀Fe₃₀(30nm)/Ta(5nm)
- two step reversal anti-parallel loop shift

Longitudinal reversal

J. McCord, K. Theis-Bröhl, et al., JAP 97, 10K102 (2005)

- nearly independent switching in stripes
- head-on domain wall motion
- slight modulation of magnetization at borders

Low angle domains - Néel wall tail influence

stripe width 2.5 μ m

- Néel wall ensemble
- generation of low angle
 perpendicular domains through
 Néel wall tails

Anisotropy patterned samples

J. McCord, J. Fassbender, APL 86, 162505 (2005)

Summary on patterned samples

- clearly resolve domain features in
 - lithographically patterned samples
 - influence of magnetostatics (see also smaller stripes shown before)
 - local domain and domain wall features in anisotropy patterned samples

Low temperature imaging

... just two examples ...

Schematics - T dependent microscopy

sketch, stolen from R. Schäfer, IFW Dresden

- domain observation from 10 K to 700 K
- lateral resolution (1 μm) limited due to sample-objective spacing
- additional application of magnetic field

Tb₄₅Fe₅₅ (25 nm)/Gd₄₀Fe₆₀ (50 nm) @77K

180 270winding and unwinding of

90

together with S. Mangin, Uni Nancy and Y. Henry, CNRS Strasbourg

Rotational reversal in spring magnets (@77 K)

Stripe domains in (Ga0.95Mn0.05)As

sample courtesy H. Ohno, Japan

(not investigated in detail)

Summary on T-observations

- observations over the whole temperature range possible
- "hit" on resolution

Advanced techniques (not mentioned so far) . . .

... quantitative techniques, frequency analysis ...

I mage calibration - $M(\Theta)$

- image normalization OO
- determining the sensitivity function (better)
 - additional images necessary

Norm. Kerr microscopy (semi-quantitative)

J. McCord, A. Hubert, Physica Status Solidi (A) 171(2), 555-562 (1999)

- analysis of two magnetization components
- quantitative magnetization vector representation in a metallic Fe-rich glass
 - stress dominated magnetization distribution

Thermal stability in GMR stacks

L. Baril, J. McCord et al., JAP 89, 1320-1324 (2001)

H_{anneal}

before annealing

after annealing at 200°C

glass/NiFe(5nm)CoFe(0.6nm)/Cu (2.4nm)/CoFe(3nm)/NiMn(28nm)

- quantitative imaging
 - rotation of anisotropy and exchange bias after perpendicular field anneal below blocking temperature

Separation of longitudinal and polar signals

B. Argyle, J. McCord,

Magnetic Storage Systems Beyond 2000/ Nato Science Series: II: Mathematics, Physics and Chemistry, vol. 41 ed. G.C. Hadjipanayis (2001)

- fringing field generation in recording heads
 - adjacent track interference

Separation of mixed domain states

J. McCord, S. Dieter, et al., Journal of Magnetism and Magnetic Materials 271, 46-52 (2004)

- separation of mixed domain states by frequency filtering (FFT)
 - stress induced stripe domains
 - microstructure induced patch domains

I mage processing

- more than one image of the same configuration needed
 - image normalization
 - quantitative imaging
 - separation of in-plane and out-ofplane components
- frequency analysis

Time resolved microscopy

... from minutes to picoseconds ...

Why/where is time resolution needed ...

relaxation processes - up to minutes

• eddy-current limited switching - µsec for "bulk" samples

• magnetic precession - 10⁻⁹ sec

$$\frac{d}{dt}\vec{M} = -\gamma\vec{M}\times\vec{H}_{eff} + \frac{\alpha}{M_s}(\vec{M}\times\frac{d}{dt}\vec{M}) \text{ LLG}$$

Additional ingredients needed ...

- observation camera
 - regular CCD camera @ 25 Hz slow dynamics
 - gated intensified CCD camera sub nsec resolution
- illumination
 - arc flash lamp µsec
 - pulsed LED approx. 50 psec (scanning mode)
 - mode-locked Laser based imaging down to 10 psec
 - Laser scanning microscopy
 - Laser based wide-field imaging
- fast field excitation
- control of timing (!)

Stroboscopic imaging - high speed reversal

- time-slice through changing delay Δt
 - repetitive events needed

Time resolved wide-field imaging (1)

- regular imaging mode camera based
- time-resolution variable from sec down to approx. 1/25 sec
- time-resolution down to approx. 1/1000 sec in stroboscopic imaging technique

Low speed reversal (Ni₈₁Fe₁₉, 240 nm)

- "Textbook" example
- "single shot" experiment
- direct observation of magnetization reversal

Low speed reversal (Ni₈₁Fe₁₉, 240 nm)

- "Textbook" example
- "single shot" experiment
- direct observation of magnetization reversal

Domain creeping in EB IrMn/NiFe

J. McCord, R. Mattheis, et al., Physical Review B 70, 094420 (2004)

- IrMn/Ni₈₁Fe₁₉ (3 nm/40 nm)
- H_{ext} = const.; M(t)
- AF induced relaxation processes

History of high speed observation (I) M. Kryder, F. Humphrey, J. Appl. Phys. 38, 829, 1969; L. Gal, G. Zimmer, et al., phys. stat. sol. A30, 561-569, 1975

from A. Hubert, R. Schäfer, Magnetic domains (1998)

q-switched ruby laser, dye laser

single shot image

- ≈ 10 ns laser pulse-width
- magnetic bubble "explosion" in YEuTmGa-FeO garnet films

History of high speed observation (II)

B. Petek, P.L. Trouilloud, et al., I EEE Trans. Magn. 24, 1722, 1990, Carnegie Mellon University

from A. Hubert, R. Schäfer, Magnetic domains (1998)

- Laser magneto-optical microscope "LAMOM"
- Inductive recording head Ni₈₁Fe₁₉ yoke
- Q-switched Nd-YAG laser ~ 5 nsec
- "differential" imaging

Time resolved wide-field imaging (II)

camera based - intensified CCD

- time-resolution down to approx.
 250 psec in stroboscopic imaging technique
- exact synchronization between magnetic field excitation and camera opening

I mage intensifier

Dynamic losses and domain multiplication

S. Flohrer, R. Schäfer, et al., submitted

Domain nucleation of domains @ 1 kHz

S. Flohrer, R. Schäfer, et al., submitted

Comparison of quasi-static and dynamics

high field reversal of Permalloy element

Ni₈₁Fe₁₉

Dynamic relaxation

D. Chumakov, J. McCord et al., Phys. Rev. B 71, 014410 (2005)

- small driving field (1.5·H_{sat}) slow reversal
- concertina development
- vortices at the left-right corners
- domain wall generation

Summary - gated image intensifier

- variable gating time DC to 200 psec
- variable repetition rate DC to 80 MHz
- combination with quasi-static observation
- very flexible
- low efficiency 0.00025 (e.g. 1 MHz, 250 ps)
- Iow SNR

Time resolved wide-field imaging (III) A. Neudert, J. McCord, et al., Phys. Rev. B 71, 134405 (2005)

Laser based Frame Grabber (stroboscopic) **Delay Control** Computer imaging (similar **Rotatable Disc** for arc flash lamp) **Trigger OUT** mode-locked Trigger IN Nd:YVO₄ Laser-**Delay Line** Multimode • time-resolution Fiber **Pulse Out** Trigger OUT 0V - 10V down to approx. 15 100 ps Strip-Line 23 MHz psec Laser scrambler Trigger IN **Pulse Generator**

needed

Speckle removal

B.E. Argyle, J. McCord; JAP 87, 6487-6489 (2000)

laser speckle interference pattern no observation possible Rotating Glass Disc

rotating "rough" glass disc strongly reduced laser speckle Kerr microscopy possible

removal of coherence effects – laser scrambler

averaging over moving speckle pattern

- rotation of M (MxH, top-b.)
- buckling of M (right)
- stretching of M (left)
- spike domains
- slow relaxation

Bi-modal reversal (Py 50 nm, 240 µm)

A. Neudert, J. McCord, et al., Phys. Rev. B 71, 134405 (2005)

2 element behavior

Spike domains (50 nm, 40 µm) A. Neudert, J. McCord, et al., Phys. Rev. B 71, 134405 (2005)

- development of spike domains (after 1 ns)
- similar to quasi-static elements
- similar to concertina development

Quantitative time-resolved imaging A. Neudert, submitted to JAP ********

Ni₈₁Fe₁₉

Relaxation in perp. EB - arc flash lamp

F. Romanens, S. Pizzini, et al.; accepted for PRE

- Iow rep. rate arc flash lamp
- approx. 10 µsec time resolution
- stroboscopic observation of domain nucleation in EB systems
- (single-shot possible)
- asymmetry in nucleation density
- wider distribution of EB field

Stroboscopic wide-field illumination

- time resolution determined by illumination source (fixed)
 - from *µ*sec to psec
- usually fixed repetition rate
- no sample movement fast

- high efficiency
- good SNR

Time-res. Laser scanning microscopy (IV)

C. Back, J. Heidmann, J. McCord, IEEE Transactions on Magnetics 35, 637-642 (1999)

Magnetization dynamics in recording heads

M. Freeman, J. Smyth, JAP 79, 5898-5900 (1996)

• out-of plane M(t) in pole-tips of recording head

• characterization of write head dynamics

Magnetization dynamics in NiFe elements

B. C. Choi, M. Belov, W. K. Hiebert, G. E. Ballentine, M. R. Freeman, Phys. Rev. Lett. 86, 728, 2001

- 15 nm Ni₈₀Fe₂₀ element, element size 10 μ m x 2 μ m
 - change of reversal modes with orthogonal bias field
 - domain walls decrease switching time

Precession of magnetic ground states

J. Park et al., PRB 67, 020403(R) (2003)

Ni₈₁Fe₁₉

confirmed by micromagnetic calculations

I maging of vortex eigenmodes

M. Buess, C. Back et al., Phys. Rev. Lett. 93, 077207 (2004)

diameter 6 µm

- multiple spin wave modes
- inversion in vortex contrast
 - switching of vortex core

6 x 6 μm², 15 nm

Ni₈₁Fe₁₉

Eigenmodes – Fourier imaging

M. Buess, C. Back et al., Phys. Rev. Lett. 93, 077207 (2004)

 extraction of non axially symmetric (shape induced) excitation modes by FFT processing

Summary on scanning dynamics

- time resolution to psec
- fixed repetition rate
- sample movement slow

- high efficiency
- best SNR (magnetometer-like)

Overall summary - good ...

 sample manipulation easy: arbitrary sample shape and size, arbitrary magnetic fields, cooling, heating, fast

- simultaneous measurement of hysteresis curves laboratory tool
- imaging of magnetization vector
 - quantitative microscopy
- information depth 20 nm
 - depth-selective imaging possible in multilayers

imaging of dynamic processes at high speed

Overall summary - ... but ...

- optical resolution limited to approx. 250 nm
- only surface domains can be seen
- not element specific

Where to go from here ...

- improve resolution
 - UV \rightarrow x2 in resolution
 - optical near field microscopy?
- single shot psec imaging
 - high power laser + ultra sensitive camera system
- Introduction overview (pre 2002)
 - A. Hubert & R. Schäfer, "Magnetic Domains", Springer (1998)
 - M. Freeman & W. Hiebert, "Stroboscopic microscopy of magnetic domains", in "Spin dynamics in confined magnetic structures I", B. Hillebrands, K. Ounadjela (Eds.) (2002)