

Bert Koopmans, September 2005

Hard disk: data rate road map

http://www.research.ibm.com/journal/rd/443/thompson.html

This Lecture

Introduction

Local dynamics: "Macro-spin" behavior

From thermally-driven to precessional (LLG) dynamics

Precessional modes in thin films (Kittel relation)

Precessional switching

Measuring precessional dynamics

Nonlocal dynamics: Spin waves and confined structures Summary

Bert Koopmans, September 2005

Statics ("macrospin", small particle)

Bert Koopmans, September 2005

Summerschool Constanta

θ

Dynamic Coercivity

• Domain wall "unpinning"

Summerschool Constanta

H

Spin precession

Switching on a field along z:

$$\Psi(t) = (e^{iE_{\uparrow}t/\hbar} \cos\frac{\theta}{2}, e^{iE_{\downarrow}t/\hbar} \sin\frac{\theta}{2})$$
$$= \dots(\cos\frac{\theta}{2}, e^{i\Delta Et/\hbar} \sin\frac{\theta}{2})$$

precessing spin at frequency:

$$\omega_L = \frac{\gamma \mu_0 H}{\hbar}$$

γ ~ 10⁻⁴ eV/T ħ ~ 1 eV fs so, GHz

7

Bert Koopmans, September 2005

Landau-Lifshitz-Gilbert Eq.

 $\frac{d\dot{M}}{dt} = \gamma \mu_0 \left(\vec{M} \times \vec{H}_{eff}\right) + \frac{\alpha}{M_c} \left(\vec{M} \times \frac{d\vec{M}}{dt}\right)$

Spin Precession

Damping

Bert Koopmans, September 2005

Justanta

Examples of Precessional Dynamics

Bert Koopmans, September 2005

A real experiment

Rietjens, Jozsa (TU/e)

Bert Koopmans, September 2005

The effective field =

Applied field +

Shape anisotropy:

$$\vec{H}_{eff} = -\overline{\overline{N}} \cdot \vec{M}$$
 Thin film: $= -N_{zz}M_{z}\hat{z} = -\mu_{0}^{-1}M_{z}\hat{z}$

Crystalline anisotropy:

$$\vec{H}_{eff} = -\frac{1}{|M|} \vec{\nabla} E_{anis} (\vec{M})$$
 Many shapes!
(neglect it here)

Exchange: Exchange stiffness

$$\vec{H}_{eff} = \frac{D}{M} \nabla^2 \vec{M}$$
 Macro spin: = 0

Bert Koopmans, September 2005

Damping of precessional modes

Highly interesting and non-trivial...

... but let's discuss it a next time...

But just let's discuss spin-lattice relaxation in a "macroscopic" limit...

L = -M

De Haas &Einstein (1918)

Bert Koopmans, September 2005

Kittel equation – Thin films

 $H_{eff}(t) = H\hat{x} - M_z(t)\hat{z}$ <u>assumption</u>: small amplitude no damping

solution:

 $M_y = \cos(\Omega t)$ $M_z = \varepsilon \sin(\Omega t)$

Just plug trial solution into LLG

$$\varepsilon^2 = H / (H + M_s) < 1$$

$$\Omega = \gamma \sqrt{H (H + M_s)}$$

derivation

... rather than γH

Bert Koopmans, September 2005

$$\vec{M} = M_{s}\hat{x} + M_{y}\hat{y} + M_{z}\hat{z}$$

$$\vec{H}_{eff} = H\hat{x} - \mu_{0}^{-1}M_{z}\hat{z}$$

$$dM_{y}/dt = -\gamma\mu_{0}\left(H + \mu_{0}^{-1}M_{s}\right)M_{z}$$

$$dM_{z}/dt = -\gamma\mu_{0}\left(-H\right)M_{y}$$

$$i\omega = -\gamma\mu_{0}\cdot i\varepsilon\left(H + \mu_{0}^{-1}M_{s}\right) \qquad (a)$$

$$-\varepsilon\omega = -\gamma\mu_{0}\cdot -H \qquad (b)$$

$$i\omega = (-\gamma\mu_{0})^{2}\frac{iH}{\omega}\left(H + \mu_{0}^{-1}M_{s}\right)$$

$$i\frac{H}{\varepsilon}(-\gamma\mu_{0}) = -\gamma\mu_{0}\cdot i\varepsilon\left(H + \mu_{0}^{-1}M_{s}\right)$$

$$\omega = \gamma\mu_{0}\sqrt{H\left(H + \mu_{0}^{-1}M_{s}\right)}$$

$$\varepsilon^{2} = \frac{H}{H + \mu_{0}^{-1}M_{s}}$$

(Reversal by) Damping

with damping

solution:

$$M_{y} = \cos(\omega t) \exp(-t/\tau)$$
$$M_{z} = \varepsilon \sin(\omega t + \phi) \exp(-t/\tau)$$

$$\tau = \frac{2(1+\alpha^2)}{\alpha\gamma\mu_0\left(2H+\mu_0^{-1}M_s\right)}$$

 $\mu_0 H >> M_s: \quad \omega \tau = \alpha^{-1} \approx 1/2\pi\alpha \text{ periods} \\ \mu_0 H << M_s: \quad \tau = 2/\alpha \gamma M_s \approx 10 \text{ ps}/\alpha \\ \end{bmatrix} \text{ indep. of } H$

Switching: $\tau_s \gg 1$ ns for $\alpha = 0.01$

Bert Koopmans, September 2005

Precessional switching

Bert Koopmans, September 2005

Switching/NoSwitching diagrams

Bert Koopmans, September 2005

Switching a real device

5 nm Permalloy element (J. Miltat)

Homogeneous excitation, still strongly non-homogeneous response !!!

Due to:

- Non-homogeneous groundstate
- Excitation of spin waves

Thereby a slow relaxation...

Bert Koopmans, September 2005

Where are we...

Introduction

Local dynamics: "Macro

Measuring precessional dynamics

Frequency domain

Time domain

All-optical techniques

Nonlocal dynamics: Spin waves and confined structures

Outlook & Summary

Bert Koopmans, September 2005

Probing spin dynamics

Frequency domain techniques

- Ferromagnetic Resonance
- Brillouin Light Scattering

Time-domain techniques

- Using fast electronics (> 100 ps)
 - Real-time scheme
- Using short laser pulses (down to fs)
 - Stroboscopic techniques
 - Scanning approaches
- Specific case: Pulsed excitation

Bert Koopmans, September 2005

t

Ferromagnetic Resonance

Bert Koopmans, September 2005

Summerschool Constanta

 ω_{res}

Brillouin Light Scattering

Hillebrands, U. Kaiserslautern, website

Bert Koopmans, September 2005

Time-Domain Techniques: Excitation Magnetic field pulses (50 ps) strip line pulse Electron bunches (~ ps) Laser pulses (30 fs)

Or combinations thereof?

• Photo switches, Breaking Schottky barrier, ...

Bert Koopmans, September 2005

Real time: MR detection

Bert Koopmans, September 2005

Stroboscopic: Pump-probe Optics

Strob.: Pump-probe "Hybrid"

Electrically generated magnetic field pulses (100 ps)

Capabilities

- Vectorial resolution (4-quadrant detector)
- Time resolution 100 ps ("no limit" for fully optical)
- Spatial resolution (~ 400 nm, diffraction limit)

PIMM ("real time FMR")

Silva et al., JAP 85, 7849 (1999)

Bert Koopmans, September 2005

Where are we...

Introduction

Local dynamics: "Macro-spin" behavior

Measuring precessional dynamics

Frequency domain

Time domain

All-optical techniques

Nonlocal dynamics: Spin waves and confined structures

Outlook & Summary

Bert Koopmans, September 2005

A surprising experiment

Heating ferromagnetic Nickel with a 50 fs laser pulse

Beaurepaire *et al*., PRL **76**, 4250 (1996)

Laser-induced Demagnetization

All-Optical Probing of Spin Precession

Frequency vs. Time-Domain

Where are we...

Introduction

Local dynamics: "Macro-spin" behavior

Measuring precessional dynamics

Nonlocal dynamics: Spin waves and confined structures

Exchange-driven: Perpendicular spin waves in thin films

Dipole-driven: Lateral spin waves

Laterally confined structures

Outlook & Summary

Bert Koopmans, September 2005

Sources of Non-homogeneous Response

Bert Koopmans, September 2005

Spin Waves - Exchange driven

Using:

$$\vec{M} = \vec{M}_0 + \delta \vec{M} \cdot e^{i\left(\vec{k} \cdot \vec{r} - \omega t\right)}$$
$$\vec{H}_{eff} = \vec{H}_{appl} + \frac{D}{M} \nabla^2 \vec{M} = \vec{H}_{appl} + Dk^2 \frac{\delta \vec{M}}{M}$$

we find:

$$\omega = \gamma \mu_0 \sqrt{\left(H + Dk^2\right)\left(H + Dk^2 + \mu_0^{-1}M_s\right)}$$

i.e., mode <u>stiffening</u>, <u>independent</u> of <u>direction</u> of wave vector

Summerschool Constanta

Bert Koopmans, September 2005

Standing Spin Waves

Bert Koopmans, September 2005

All-Optically Probing Standing Spin-Waves

Bert Koopmans, September 2005

Optically Probing Spin Waves: Analysis

Observed:

$$\omega = \omega_0 + Dk^2$$

Conclusions:

Boundary conditions: Free surface

 $D = 0.44 \text{ eVA}^2$ (as wexpected)

Bert Koopmans, September 2005

And the amplitudes... (why no n = 2?)

Laser extinction depth ~ 15 nm

Bert Koopmans, September 2005

Artificial Spin-Chains: Basic Results

Bert Koopmans, September 2005

Artificial Spin Chains: Analysis

Bert Koopmans, September 2005

Spin waves - Dipole driven

Three sorts

$$\omega = \gamma \mu_0 \sqrt{H \left(H + \mu_0^{-1} M_s \right)} \qquad \qquad \omega = \gamma \mu_0 H$$

Bert Koopmans, September 2005

Magnetostatic Backward Volume Mode

• Just replace: $\mu_0^{-1}M_s \rightarrow \mu_0^{-1}M_s - kd \cdot A_{MBVM}$

• Limit of
$$kd >> 1$$
: $\omega = \gamma \mu_0 \sqrt{H(H + \mu_0^{-1}M_s - kd \cdot A_{MBVM})}$

Bert Koopmans, September 2005

Magnetostatic Forward Volume Mode

• Now we get a stiffening, rather than a softening!

• Limit of kd >> 1: $\omega = \gamma \mu_0 \sqrt{H(H + \mu_0^{-1}M_s)}$

Bert Koopmans, September 2005

Magnetostatic surface mode (Damon-Eshbach)

- Now it gets complicated:
 - Softening during out-of-plane phase
 - Hardening during in-plane phase
- The latter is known to win...

Bert Koopmans, September 2005

Damping by Emission of Spin Waves

Bert Koopmans, September 2005

Observation of localized modes

Bert Koopmans, September 2005

Link with lateral spin waves

Negative dispersion: "MSBVM"

Positive dispersion: "MSSM"

Bert Koopmans, September 2005

Dynamics of Real Devices

Rietjens (TU/e) – Boeve (Philips Research) et al., APL submitted

Bert Koopmans, September 2005

Dephasing after homogeneous excitation

Raster scans at fixed time delay (50 ps steps)

Different frequency and damping at edges

Bert Koopmans, September 2005

Results: Time domain

Bert Koopmans, September 2005

Results: Frequency domain

Comparing simulations with experiment

Final analysis

Bias field dependence of uniform and localized mode

Summary

Local dynamics: "Macro-spin"

- LLG equation
- Kittel relation for thin films
- Precessional Switching

Measuring precessional dynamics

• In the f- and t-domain (including "all-optical")

Nonlocal dynamics: Spin waves and confined structure

- Exchange modes
- Dipolar modes (positive and negative dispersions!)
- Manifestation in confined structures
- Complicated dynamics in "real" devices

Bert Koopmans, September 2005

Bert Koopmans, September 2005