

"Biomedical applications based on magnetic nanoparticles"

R. Fernández-Pacheco¹, C. Marquina², D. Serrate² and J.G Valdivia¹ M. Gutierrez¹ and M.R. Ibarra^{1,2}

¹Instituto de Nanociencia de Aragón, Edificio Interfacultades II, Zaragoza (Spain)
²Instituto de Ciencia de Materiales de Aragón (CSIC/Universidad de Zaragoza), Facultad de Ciencias, Zaragoza (Spain

Constanta 2005

OUTLINE OF THE TALK

- -Introduction to nanoscale materials
- -Small magnetic particles
- -Encapsulated nanoparticles:preparation and charaterization
- -Bioferrofluids for local drug delivery -Summary

Nanoscale is the meeting point between the molecular chemistry and condensed matter

The macroscopic world offer materials with a determine functionality wich can be modify by size reduction

Applications of Nanoscience

Scale reduction at nanoscopic level open new views for science and applications

-Therapeutic drugs -Tagging of DNA and DNA chips -Information storage

-Magnetic refrigeration

-Harder metals

-Catalysts

-Sensors based in nanoporous membranes

-Improved batteries

Medical application of magnetic nanoparticles

OUTLINE OF THE TALK

- -Introduction to nanoscale materials -Small magnetic particles
- -Encapsulated nanoparticles:preparation and charaterization
- -Bioferrofluids for local drug delivery -Summary

How small?

TABLE 2.1The relation between the total number of atoms in fullshell clusters and the percentage of surface atoms

Full-shell	Clusters	Total Number of Atoms	Surface Atoms (%)
1 Shell	88	13	92
2 Shells		55	76
3 Shells		147	63
4 Shells		309	52
5 Shells		561	45
7 Shells		1415	35

30 nm \rightarrow 5 % atoms at the surface

10 nm \rightarrow 20 % atoms at the surface

 $3 \text{ nm} \rightarrow 50 \%$ atoms at the surface

Crítical size for single-domain particle

-Under size reduction the coercive field increases and the the particle becomes singledomain

-When $E_{\kappa} = KV$ as $V \rightarrow 0$ then $E_{\kappa} \rightarrow 0$ superparamagnetic limit $\longrightarrow KV = k_{\rm B}T$

-At this situation the particle magnetic moment will fluctuate independently of the particle

Classic paramagnet

If $K \rightarrow 0$

The supermoment follows the Langevin law

Quantum paramagnet

If K>>>

The supermoment follows the Brillouin J=1/2 law

Real superparamagnetic system

-No hystheresis

-The isotherm presents a universal H/T behaviour

Time effects:relaxation

Due to the stocastic nature of the thermal energy the superparamagnetism is a time dependent effect

 $\tau = \tau_0 \exp(-KV/k_BT)$

 τ time for magnetization reversal (depend on the anisotropy)

Si $\tau < \tau_{measure}$ superparamagnetism

 τ_0 tipically 10⁻⁹ s

Critical volume to detect superparamagnetism:

 $V_{sp}=25(k_{B}T/K) \quad \tau_{measure} = 100 \text{ s} \quad T_{B}=KV_{sp}/25k_{B}$ $V_{sp}=4.5(k_{B}T/K) \quad \tau_{measure} = 10^{-7}\text{s} \quad T_{B}=KV_{sp}/4.5k_{B}$

 T_B Mösbauer = 5.5 T_B magnetometry (FC y ZFC)

OUTLINE OF THE TALK

- -Introduction to nanoscale materials -Small magnetic particles
- -Encapsulated nanoparticles:preparation and charaterization
- -Bioferrofluids for local drug delivery -Summary

Particles coating: Carbon and Silica nanocages

The discovery of graphitic nanostructures as fullerenes and nanotubes offers the possibility to fill nanoscale cavities with transition metals

The confinenement of this small amount of material promises:

-Novel physical properties

-Protection of the encapsulated metals from oxidation by resistant carbon cages

Kratschmer-Huffman Method

-The anode is a graphite-metal composite -Several carbon and graphitic structures are obtained

Arc-discharge Furnace

Products showing the weblike soot on the collarette

- -Fullerenes
- -Amorphous carbon
- -Graphitic structures

Manganese encapsulated nano particles

-Graphitic multiwall nanotubes -Catalytic particles forming large single wall nanotubes -Small particles sourronded by polygonal layers: Onions -Metallic inclusions in nanotubes -Nanoparticles encapsulated in graphitic layers and glassy carbon

TEM images of Fe & Co encapsulated nanoparticles

Fe coated by graphitic layers

Sample treatment an average size

- -Samples are sonicated in a dilution of surfactant (SDS and distilled water (5g/l))
- -Magnetic separation is acheived in a field gradient of 3 kOe/cm
- -Chemical etching with aqua regia is made to remove the uncovered metallic particles

Magnetic characterization

-SQUID magnetometry
-Mössbauer spectroscopy

Si $\tau < \tau_{medida}$ superparamagnetism

Critical volume to detect superparamagnetism:

 $V_{sp}=25(k_BT/K)$ $\tau_{static}=100 \text{ s}$ $T_B=KV_{sp}/25k_B$ $V_{sp}=4.5(k_BT/K)$ $\tau_{mossbauer}=10^{-7}\text{ s}$ $T_B=KV_{sp}/4.5k_B$

Móssbauer spectroscopy

No indication of SP relaxation at room temperature

Estimated particle size 13-9 nm (interparticle interaction)

H.R. Rechenberg et al. J. Magn. Magn. Mat 226-230 (2001) 1930

Magnetization measurements

superparamagnetic behavior from RT to 5 K

Blocked particles

Large/correlated particles

Superparamagnetic particles Small particles

Blocking temperature is determinaed from FC and ZFC

Silica encapsulated Fe nanoparticles

Fe encapsulated in Silica X-Ray Photoelectron Spectroscopy

Fe encapsulated nanoparticles Electron Energy Loss Spectra (EELS) (in collaboration J. Arbiol)

High Resolution Transmision Electron Microscopy of carbon encapsulated iron nanoparticles

OUTLINE OF THE TALK

- -Introduction to nanoscale materials
- -Small magnetic particles
- -Encapsulated nanoparticles:preparation and charaterization
- -Bioferrofluids for local drug delivery
- -Summary

BIOFERROFLUIDS AS THERAPEUTIC CARRIERS

- -They should be magnetic to by guided by applied magnetic fields
- -The magnetic materials are not biocompatibles
- -The nanoparticles should be encapsulated
- -The sourrounded material should be able to adsorb and desorb the drug

J.Johnson et al., EC&M 3 (2002) 12

Local drug delivery by using magnetic carriers

BIOFERROFLUIDS

-Biocompatibility

Drug adsortion/desorptionProteins conjugation

Plasma Krästchmer-Hoffman

Endoscope

Trocar for magnet implantation

Implant

In-Vivo localization of magnetic particles by systemic administration and using magnetic implants

Bioferrofluid

Intravenous administration

In coll. Hospital Clínico Veterinario

Magnet implant in the left kidney

Right kydney witout magnetic implant

Kidney with magnetic implant: Moderate concentration of nan<u>oparticles</u>

Rabbit 22

Rabbit 23

Nanoparticles traveling in blood

Tested biocompatibility

Dynamic of the adsorption and release of Doxorubicine on carbon coated magnetic nanoparticles

Saturation after 20 minutes

Complete release after 100 hours

Matter manipulation at atomic level

Targeting

Contrast enhancer

Permeation enhancer

Inteligent nanovectors

Magnetic targeting future for cancer therapy?

