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The technique of Magnetic Force Microscopy has been discussed extensively in literature [3, 5, 4], so we will restrict
ourselves to a short description. The principle of Magnetic Force Microscopy is very much like that of Atomic Force
Microscopy – some even dare to mention that MFM is just an AFM with a magnetic tip, much to the dislike of MFM
developers because in an MFM much smaller forces are measured. In essence it is true however, and every MFM is capable
of AFM as well (the other way round is not true in general).

In an MFM the magnetic stray field above a very flat specimen, or sample, is detected by placing a small magnetic
element, the tip, mounted on a cantilever spring very close to the surface of the sample (figure 1). Typical dimensions
are a cantilever length of 200 µm , tip length of 4 µm and diameter of 50 nm and a distance from the surface of 30 nm.
The force on the magnetic tip is detected by measuring the displacement of the end of the cantilever, usually by optical
means. The forces measured in typical MFM applications are in the order of 30 pN, with typical cantilever deflections on
the order of nanometers.

An image of the magnetic stray field is obtained by slowly scanning the cantilever over the sample surface, in a raster-like
fashion. Typical scan areas are from 1 up to 200 µm with imaging times in the order of 5-30 minutes.
1 Mode of operation

The force F excerted on the tip by the stray field of the sample has two effects on the cantilever deflection. In the first
place the cantilever end is deflected towards or away from the sample surface by a distance ∆z:

∆z = Fz/c [m] (1)

Where c is the cantilever spring constant in z-direction [N/m]. This deflection can be measured using soft, usually
Si3N4 , cantilevers with spring constants in the order of 0.01-0.1 N/m. When measuring the deflection, we speak about
static mode MFM .

For small deflections, the cantilever can be considered as a damped harmonic oscillator, which can be modelled by an
ideal spring c [N/m], mass m [kg] and damper D [Ns/m] [2]. When we apply an external oscillating force Fz = F0cos(ωt)
to the cantilever, the resulting displacement is harmonic as well, but has a phase shift for ω > 0, z = z0cos(ωt + θ(ω)).
This force can be applied directly to the end of the cantilever, for instance by electrostatic means. To most commonly
used method is however to apply a force to the cantilever holder, by means of a piezo mounted underneath the holder.

It is convenient to desribe the relation between force and displacement in the Laplace domain 1

1We use the definition commonly used in mechanical engineering textbooks F̂ (s) =
∫ +∞
−∞ f(t)e−stdt
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Figure 1: Principle of Magnetic Force Microscopy
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Ẑ

F̂
=

1
c + sD + ms2

[m/N ] (2)

Using the natural resonance frequency ωn and unitless damping factor δ

ωn =
√

c/m [2π/s] (3)

δ =
D

2
√

mc
=

Dωn

2c
(4)

we can rewrite (2) into

Ẑ

F̂
=

1
mω2

n + 2δωnms + ms2
[m/N ] (5)

For underdamped systems (δ < 1), this system has poles at

s1,2 = −δωn ± iωn

√
1− δ2 = −δωn ± iωd (6)

The term ωd = ωn

√
1− δ2 is referred to as the damped natural frequency. For MFM in dynamic mode cantilevers with

very small damping (δ � 0.01) are used and ωd ≈ ωn. In MFM it is custom to talk about the quality factor of resonance
Q, instead of the damping factor. Q is proportional to the ratio between the energy stored in the cantilever and the energy
lost per cycle:

Q = 2π
Energy stored in cantilever

Energy lost per cycle
= 2π

1
2cz2

0

πDz2
0ωn

=
c

Dωn
=

1
2δ

(7)

Using Q (5) becomes:

Ẑ

F̂
=

1
mω2

n + ωnm
Q s + ms2

[m/N ] (8)

From (8) we can calculate the amplitude z0 of the cantilever vibration when driven at a frequency ω [1]

z0 =
F0/m√

(ω2
n − ω2)2 + (ωωn/Q)2

(9)

and the phase shift θ between the force and the deflection (Also see figure 2)

θ = tan−1

(
ωωn

Q(ω2
n − ω2)

)
(10)

In MFM, the force on the magnetic tip increases when it approaches the sample, so it is as if there is a second spring
with a spring constant of ∂F/∂z attached to the cantilever. In the case that the cantilever deflection so small that ∂F/∂z
can be considered a constant, this results in a change in natural resonance frequency fn = ωn/2π of the cantilever

f ′n = fn

√
1− ∂Fz/∂z

c
[Hz] (11)

∆f = f ′n − fn ≈ −fn

2c

∂Fz

∂z
[Hz] (12)

The approximation is accurate for ∆f � fn, which is always the case in MFM. Note the sign of ∆f . In the above
equations it is assumed that the positive z-direction is pointing away from the surface. When the tip is attracted towards
the sample, the force therefore is negative, and the force derivative is positive. So for attracting forces the resonance
frequency of the cantilever decreases. Please note that expression (11) is only valid for small vibration amplitudes. When
∂F/∂z cannot be considered constant, the vibration contains higher harmonics and more elaborate, and even numerical
methods are needed to calculate the resonance frequency shifts.

When we measure the resonance frequency of the cantilever, we speak about dynamic mode MFM (indicated by frequency
in fig 2). In this mode the cantilever is usually forced to resonate at an amplitude of 10-30 nm, so that an accurate detection
of the very small frequency shifts is possible (typically 3 Hz on 80 kHz). In this mode a control circuit is needed which

2

European School of Magnetism : New experimental approaches to Magnetism  - Constanta, 2005

Principle of Magnetic Force Microscopy III.2 -                                            Leon  Abelmann



0

0

-180

-90

Ph
as

e 
di

ff
er

en
ce

 [d
eg

]
A

m
pl

it
ud

e 
[n

m
]

Drive frequency [Hz]fres fres

,

phase

frequency

amplitude

Figure 2: A change of the magnetic force on the tip results in a change in resonance frequency of the cantilever, which
can be detected in different ways.

matches the beat frequency of the actuator that drives the cantilever (e.g. a piezo), with the actual resonance frequency.
Very often a phase locked loop (PLL) circuit is used, which keeps the phase difference between the driving signal and the
measured deflection of the cantilever at approximately 90o. This control circuit adds additional noise to the measurement
signal. For small signals it is therefore sometimes preferable to fix the frequency of the driving signal to fn and measure
the phase difference between the driving signal and the measured cantilever deflection (indicated by phase in fig 2). The
phase shift, which is in the order of a few degrees, strongly depends on the damping of the cantilever, which on its turn
is a function of many parameters. The phase signal is therefore not really suitable for quantitative analysis.

An even simpler dynamic detection mode is to drive the cantilever off-resonance. A change in resonance frequency will
result in change of the vibration amplitude (amplitude in fig 2). Even though this amplitude mode works fine for AFM, it
gives very poor results for MFM because the amplitude variations are small compared to the noise. Moreover the response
of the cantilever to a change in force is slow when the quality factor of resonance is high, which is for instance the case in
vacuum[1]. Therefore this mode is not used very often.

Fundamentally there is no difference in sensitivity between the static mode and dynamic mode, because both modes
use the same measurement geometry. For a number of reasons, to which we will come back later, the dynamic mode often
gives better results however.
2 Image formation

To calculate the force on the magnetic tip, we have to start with the calculation of the energy U of the tip/sample system.
The gradient of this energy then gives us the force vector. For MFM we are particularly interested in ∂U/∂z.

We have two ways to calculate U . One can either calculate the energy of the magnetic tip in presence of the sample
stray field or the energy of the magnetic sample in presence of the tip stray field[4]. In both cases we have to integrate
the inner product of magnetic field and magnetization over the area where the magnetization is not zero:

U = −µ0

∫
tip

~Mtip
~HsampledV = −µ0

∫
sample

~Msample
~HtipdV (13)

Which method is more convenient, depends on the problem which is to be analysed. One usually takes that form for
which the stray field calculation is more easy to perform.

When discussing image formation and resolution, it is convenient to do that in the spatial frequency domain- a method
commonly used in magnetic recording theory. We therefore decompose the sample magnetization ~M in the sample plane
(x, y) into their Fourier components, leaving the z component untransformed:

~̂
M(kx, ky, z) =

∫ ∞

−∞

∫ ∞

−∞
~M(x, y, z)e−i(xkx+yky)dxdy (14)
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Figure 3: The ideal MFM tip has a bar shape and a magnetization fixed along its axis

The relation between the wavelength of a certain component λ and the Fourier components is

~k = (kx, ky) (15)

kx(y) =
2π

λx(y)
(16)

The stray field of the sample generated by this magnetization distribution can be calculated by means of a Laplace
transform. For a thin film with thickness t one can obtain with some patience [7]

 Ĥx(kx, ky, z)
Ĥy(kx, ky, z)
Ĥz(kx, ky, z)

 =

 −ikx/|~k|
−iky/|~k|

1

 1
2
(1− e−|

~k|t)e−|~k|zσ̂eff (~k) (17)

Where σ̂eff (~k) is an effective surface charge distribution. It expresses the property of the Laplace transformation that
the stray field at height z above the sample surface is fully determined by the stray field at height z = 0. The effective
surface charge distribution can be seen as a sheet of charges at the sample surfaces, which causes the same stray field as
the more complex charge distribution within the sample itself2.

For a sample with perpendicular magnetization (Mx = 0,My = 0), σeff (x, y) simply equals the surface charge density
σ.

σ̂eff (~k) = M̂z(~k) = σ̂(~k) (18)

For a sample with an in-plane magnetization (so Mz = 0) we only have volume charges ρ(x, y). If the magnetization is
constant over the film thickness (∂Mx/∂z = 0, ∂My/∂z = 0) the effective surface charge distribution becomes

σ̂eff (~k) = − i~k

|~k|
· ~̂
M(~k) =

ρ̂(~k)

|~k|
(19)

For more complex situations, every magnetic charge in the sample has to be transformed, which results in rather lengthly
expressions, and this method looses its power. In that case it might be easier to calculate the stray field from the tip.

Assuming a known effective surface charge distribution, we can now calculate the energy of the tip/sample system by
combining (13) and (17). The only thing left unknown is the magnetization distribution in the MFM tip, which can be
very complex. We will restrict ourselves however to the bar type tip with a magnetization fixed along the z-axis (Figure 3),
in the first place because this is the ideal MFM tip shape [6] and in the second place because it results in very illustrative
closed-form equations. The procedure to obtain the force Fz involves a simple integral of the stray field over the recangular
tip volume, and taking ∂U/∂z[6]:

F̂z(~k, z) = −µ0Mt · b sinc(
kxb

2
) · S sinc(

kyS

2
)

×(1− e−|
~k|h)(1− e−|

~k|t)e−|~k|zσ̂eff (~k) (20)

2The σ̂eff introduced here differs by a factor of 2 from the effective surface charge distribution defined in [7, 6]
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Figure 4: Tip transfer functions for a typical situation (table 1)

Where Mt is the tip magnetization [A/m], b × S the tip cross section, h the tip height, t the film thickness and z the
tip/sample distance (all in [m])3. This relation between the force and the effective surface magnetization is often called
the tip transfer function (TTF).

Allthough (20) is complex, it is not difficult to understand. We see that the force is proportional to the tip magnetization
and the magnetic charge density (σ) in the sample, combined with a number of geometrical loss factors. For most situations
in magnetic data storage research, the films under investigation are thin and the film thickness loss term (1− e−|

~k|t) will
dominate over the tip height term (1 − e−|

~k|h). If we further assume that the tip cross-section (b × S) is much smaller
than the smallest features of the charge distribution in the film, we get a very simple expression for the TTF

F̂z(~k, z) = −µ0MtbS(1− e−|
~k|t)e−|~k|zσ̂eff (~k) (21)

This approximation can be called the monopole approximation, because we assume that all magnetic charges (MtbS)
are located at one point at the end of the tip, and that the other charges are very far away from the sample surface. The
only loss terms that remain are the film thickness loss, and the tip-sample distance loss, which usually is dominant. This
immediately shows that for a good signal to noise ratio (SNR) in the image, the tip/sample distance has to be as small as
possible.

When the details in the image start to approach the tip dimensions, the sinc functions have to be considered as well. For
this bar type tip, the force becomes zero when the wavelength of the surface charge distribution equals the tip size. This
is analogue to the situation in magnetic recording, where at the gap zero the bitsize is half the gap-size of the recording
head.

The force we calculate in (20) is measured by means of a cantilever deflection or change in resonance frequency. For the
latter case ∂Fz/∂z has to be calculated, which in the Fourier domain is simply:

∂F̂z(~k, z)
∂z

= −|~k|F̂z(~k, z) (22)

A typical example of TTFs for the static and dynamic mode and the resulting deflection and resonance shift, calculated
from (1) and (12), is given in figure 4. In this case we consider a sample with perpendicular magnetization and only
magnetic surface charges, using the parameters from table 1.

Mt Tip magnetization 1422 kA/m
b Tip thickness (coating thickness) 20 nm
s Tip width 100 nm
h Tip length 1 µm
Ms Sample saturation magnetization 295 kA/m
t Sample thickness 70 nm
z0 Tip sample distance 20 nm
c Cantilever spring constant 0.01 (3) N/m
fn Cantilever resonance frequency 7 (75) kHz

Table 1: Parameters used to calculate the tip transfer functions shown in figure 4. Values in parentheses are for the
dynamic mode curves

3sinc(x) = sin(x)/x

5Principle of Magnetic Force Microscopy III.2 -                                            Leon  Abelmann



1/Dt1/(NDt)

frequency (Hz)

N
oi

se
 (n

m
 o

r 
H

z)

DB

DB’

Figure 5: Increasing the measurement time can increase low frequency noise

3 Critical wavelength

Although everyone knows what a high resolution image is, to quantify resolution is not trivial. When an imaging system
has high resolution, we usually mean that it is able to separate two closely spaced objects. We do not mean that it can
detect one single small object: this has to do with sensitivity. We can define resolution as the minumum spacing between
two objects that can still be observed. Instead of two, we can of course take a number of equally closed spaced objects.
If we take an array, we can even define resolution in a certain direction. By using the array, the definition of resolution
can quite naturally be transferred to the spatial frequency domain as the minimum spacial wavelength that can still be
observed. Using the theory of section 2, we see that the signal strongly decreases for high frequency components, or small
wavelengths. Analog to magnetic recording theory, we can define a certain upper limit on the spatial frequency, above
which we call the signal ‘non-detectable’. This is usually done with respect to the background noise level: the signal to
noise ratio (SNR) should exceed a certain value. For magnetic recording, the SNR should be about a factor of 10 (20 dB),
for imaging we consider an image still acceptable at an SNR as low as 2 (3 dB).

In principle, the SNR can be made arbitrarily high by increasing the measurement time, because that decreases the
measurement bandwidth. This however assumes that the background noise is white, i.e. it has a flat frequency spectrum.
In practice, the noise strongly increase when the frequency becomes very low. This is usually referred to as 1/f noise
and is caused by drift, for instance by temperature variations or piezo creep. As an illustration, let us take the schematic
noise spectrum of figure 5. The measurement bandwidth ∆B is related to the measurement time between the pixels ∆t
and the total number of pixels N , the combination of which determines the total time to measure an image.

∆B =
1

∆t
− 1

N∆t
≈ 1

∆t
(23)

We see that the bandwidth is inversely proportional to the measurement time. But at long measurement times, the
bottom of the measurement band will enter the 1/f noise region, which is indicated by ∆B′ in figure 5. So if we exceed a
certain measurement time, the total noise (there area under the curve) will start to increase, and cancel out the effect of a
smaller bandwidth. In MFM, this situation results in a ‘stripy’ image, where the individual scanlines have noticeable offsets
with respect to each other. Image processing can partly eliminate this effect (remove line average), but only if the low
frequency noise periods are much longer than the time between scanlines. (One should be careful however, because with
imaging processing of this kind one enters the twilight zone of image manipulation). So for reasons of image quality, and
of course for practical reasons, we always have to take a limited measurement time into account. A minumum bandwidth
of 200 Hz is reasonable. This allows us to link noise in the frequency domain to noise in the spatial domain through the
scanspeed. Now we can find the resolution in figures like figure 6, by calculating the wavelength where the signal drops
below the noise level multiplied with the desired SNR. Because the minumum SNR is quite low and usually the tip transfer
function is very steep around this point, we simply set the SNR to unity. We call this point the critical wavelength or λc.
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Figure 6: Using the background noise level, we can define the limit of resolution by means of a critical wavelength (λc)
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