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I) - History and basic concepts of XAS  
- XMCD at M4,5 edges of 4f rare earths
- XMCD at L2,3 edges of 3d metals
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Polarization dependence of X-ray Absorption Spectra    

eq : polarisation vector      q = -1 (right circularly polarized light)

q = 0 (linearly, // to quantisation axis)

q = +1 (left circularly polarized light)

X-ray Magnetic Circular Dichroism (XMCD): difference in absorption for left and 
right circularly polarised light.

X-ray Linear Dichroism (XMLD): difference in absorption for linearly 
polarised light ⊥ and // to quantisation axis (q = ± 1 and q = 0 ).

Magnetic dichroism



X-ray Magnetic Dichroism : dependence of the x-ray absorption of a magnetic
material on the polarisation of  x-rays

1846 - M. Faraday: polarisation of visible light changes when trasmitted by a magnetic
material

1975 - Erskine and Stern - first theoretical formulation of XMCD effect
excitation from a core state to a valence state for the M2,3 edge of Ni. 

1985 - Thole, van de Laan, Sawatzky - first calculations of XMLD for rare earth
materials

1986- van der Laan - first experiment of XMLD

1987 - G. Schütz et al. - first experimental demonstration of the XMCD at the K-edge
of Fe



Advantages with respect to Kerr effect

- Element selectivity:
using tunable x-rays at synchrotron radiation sources
one can probe the magnetisation of specific elements
in a complex  sample through one of the characteristic 
absorption edges. 

- Orbital selectivity : 
by selecting different edges of a same element  
we can get access to magnetic moments of 
different valence electrons

Fe :   L2,3 edges      2p → 3d   ;      K edge     1s → 4p

- Sum rules 
allow to obtain separately orbital and spin contributions to the magnetic moments 
from the integrated XMCD signal. 

- XMCD is proportional to <M> along the propagation vector k. Ferromagnetic, 
ferrimagnetic and paramagnetic systems can be probed. 



Interaction of x-rays with matter

I(ω) = I0(ω) e -µ(ω)x Lambert-Beer law
I (I0) = intensity after (before) the sample
x= sample thickness ; 
µ= experimental absorption cross section 

Fermi ’s Golden Rule

σabs = (2π / h) |< Φf |T | Φi >|2 ρf (hω - Ei )

|< Φf |T | Φi >| matrix element of the electromagnetic field operator
|Φi > initial core state; <Φf | final valence state
ρf (E ) density of valence states at E  > EFermi
Ei core-level binding energy 

T = (e/mc) p⋅A Plane wave:    A = eqA0exp[i k⋅r]

eq : light polarization vector ; k : light propagation vector ; r and p: electron position and momentum

T = CΣq[eq ⋅ p + i (eq ⋅ p)(k⋅r)]

dipole operator quadrupole operator



Electric dipole approximation (k⋅r << 1)

T = C (eq ⋅ p) → 1 ∝ (eq ⋅ r)

↑
Commutation relation: [r,H] = (ih/m)p

Transition probability :

σabs ∝ |< Φf | eq ⋅ r | Φi >|2 ρf (hω - Ei )

Dipolar selection rules : 

∆l = ± 1, ∆s = 0

Absorption cross section



K-edge: 1s → empty p-states
L1-edge: 2s → empty p-states
L2,3-edges: 2p1/2, 3/2 → empty d-states
M4,5 -edges: 3d 3/2, 5/2  → empty f -states

Absorption edges

Spin -orbit coupling: l ≥ 1    
Spin parallel/anti-parallel to orbit: 
j= l + s, l - s

p → 1/2, 3/2         d → 3/2, 5/2
Branching ratios: -j ≤ mj ≤ j

p1/2 → mj = -1/2, 1/2
p3/2 → mj = -3/2, -1/2, 1/2, 3/2
Intensity ratio p3/2 : p1/2 = 2 : 1

d5/2 : d3/2 = 3 : 2



Single particle vs. multiplets

Transitions delocalised states
(interaction with neigbouring atoms >> 
intra-atomic interactions)
Single electron approximation
K-edges, L2,3 edges of TM metallic systems

Transitions to localised states (intra-atomic 
interactions >> interaction with environment) 
Multiplets - atomic approximation
M4,5-edges of rare earths (3d → 4f transitions)

magnetic, crystal fields are weak perturbations
L2,3 edges of TM ionic systems

crystal field environment is more important



Rare earth ions : calculation of M4,5 (3d → 4f) spectra

- Atomic model : electronic transitions take place between the ground-state and
the excited state of the complete atom (atomic configuration) :

3d10 4fN → 3d9 4fN+1

- calculation of the discrete energy levels of the initial and final state N-particle
wavefunctions (atomic multiplets) 
- the absorption spectrum consists of several lines corresponding to all the
selection-rule allowed transitions from Hund’s rule ground state to the excited
states. 



3d10 4fN → 3d9 4fN+1

Each term of the multiplet is characterised by quantum numbers L, S, J: 

(2S + 1) XJ

L =  0     1     2     3     4     5     6

X =  S    P     D    F     G    H     I

multiplicity :  (2S + 1) 
S =  0   (singlet)   S = 1/2 (doublet) etc ..          
|L - S| ≤ J ≤ L + S 

degeneracy : (2L + 1) (2S + 1)
example:   term 3P is  3x3 = 9-fold degenerate. 

Rare earth ions : calculation of M4,5 (3d → 4f) spectra



Calculation of atomic spectra

Fermi ’s Golden Rule: σ abs ∝ Σq |<Φf |eq ⋅ r|Φi >|2 δ (hω- Ef + Ei)

for a ground state |J,M> and a polarisation q

σ qJM → J’M’ ∝ |< J′M’ | eq ⋅ r | JM >| 2 δ (hω - EJ’,M’+ EJ,M)

total spectrum is the sum over all the final J’ states

by applying Wigner-Eckhart theorem:

σ qJM → J’M’  ∝ <  [ (-1)J-M (                )]2 |< J′ ||Pq || J> |2

3J symbol ≠ 0 if: ∆ J = (J′- J) = -1, 0, +1

∆M = (M′- M) = q     q = -1 (right); q = 1 (left), q=0 (linear)

J 1 J ′
-  M q M ′



For a ground state |J,M> and for every ∆J : 

σ q=1 - σ q=-1 ∝ M

XMCD ∝ Σ∆J (σ q=1 - σ q=-1) ∝ M [2(2J-1) P-1 + 2 P0 - 2(2J+3) P1] 

If several Mj states are occupied: 

XMCD ∝ <MJ>

- XMCD is therefore proportional to the magnetic moment of the 
absorbing atom
- XMCD can be used as element selective probe of 
magnetic ordering



Case of Yb3+   : XAS spectrum

Yb 3+ 3d104f13 → 3d94f14

Without magnetic field: 
initial state : 4f1 L=3 S=1/2   terms : 2F5/2

2F7/2
2F7/2 is Hund’s rule ground state (max S then max L then max J)

final state : 3d1 L=2  S=1/2    terms :  2D3/2
2D5/2

selection rules : ∆J= 0; ± 1
only one transition from 2F7/2 to 2D5/2  with ∆J= -1 (M5 edge)
2F7/2 to 2D3/2 (M4 edge) is not allowed

M5 M4

In spherical symmetry the GS is (2J+1) 
degenerate and all Mj levels are equally
occupied; <Mj>=0 and the XAS spectrum
does not depend on the polarisation



With magnetic field - Zeeman splitting: 
18 lines, 3 groups with ∆M = 0 (linear parallel)   ; ∆M = ± 1 (left, right)

Energy of MJ - levels: EMj = -gαJµBHMJ

For T = 0K: only Mj = -7/2 level is occupied : only ∆M = + 1 line is allowed
? only LEFT polarisation is absorbed: maximum  XMCD signal 

For T > 0K higher MJ levels are occupied according to Boltzmann-distribution

XMCD is reduced , will be proportional to <MJ> and will be non zero as long as kT< gαJµBH

Case of Yb3+ : XMCD spectrum
M5 M4

Total

q = +1

q = -1

XMCD



Case of Dy3+

4f9 6H15/2  ground state

XAS spectra and XMCD vs reduced temperature
TR=kT/ gαJµBH
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L2,3 edge XMCD in 3d metallic transition metals

- Magnetic 3d metals: Fe (3d7), Co (3d8), Ni (3d9)
- atomic (localized) description not valid anymore

? one-electron picture: transition of one electron from core spin-orbit
split 2p1/2, 2p3/2 level to valence 3d band;  the other electrons are 
ignored in the absorption process

Experimental L2,3 edge spectra

here we deal with the polarisation dependence of the ‘ white lines ’

white line



σq ∝ Σq |< Φf | eq ⋅ r | Φi >|2 ρ (hω - Ei )

One electron picture: transitions from 2p to 3d band split by exchange in 3d↑ and 3d↓

|l, ml, s, ms> = = aml Y 1,ml |s, ms>

I↑ = Σ |<f |P1 |i> |2 = (1/3 |<2,1 |P1 |1,0> |2 + 2/3 |<2,0 |P1 |1,-1> |2 ) R2

I↓ = Σ |<f |P1 |i> |2 = (2/3 |<2,2 |P1 |1,1> |2 + 1/3 |<2,1 |P1 |1,0> |2 ) R2

i,f

L2 edge - left polarisation ( ∆ml=+1 ) 

| l,s,J,mj>
| l,ml,s,ms>
basis3d↓

3d↑

|1/2, 1/2 > |1/2, -1/2 >

ml 2 1 0 -1 -2

R=∫Rnl*(r)Rn’l’(r) r3dr



It can be calculated (Bethe and Salpeter) that:

|<2,2 |P1 |1,1> |2  = 2/5
|<2,1 |P1 |1,0>|2  =  1/5
|<2,0 |P1 |1,-1> |2 = 1/15

I↑ = 1/3( |<2,1 |P1 |1,0> |2 + 2/3 |<2,0 |P1 |1,-1> |2 ) R2 = 
=  (1/3 * 1/5 + 2/3 * 1/15) R2 = 1/9 R2

I↓ = 2/3 |<2,2 |P1 |1,1> |2 + 1/3 |<2,1 |P1 |1,0> |2 R2

= (2/3 * 2/5 + 1/3 * 1/5) R2 = 1/3 R2

I↑ / (I↑ + I↓ ) = 0.25          LCP at the L2 edge
I ↓ / (I↑ + I↓ ) = 0.75 

I↑ / (I↑ + I↓ ) = 0.75          RCP at the L2 edge
I ↓ / (I↑ + I↓ ) = 0.25



L3 edge

I↑ = (|<2,2 |P1 |1,1> |2 + 2/3 |<2,1 |P1 |1,0> |2 + 1/3 |<2,0 |P1 |1,-1> |2 ) R2

=    (2/5 + 2/3 * 1/5 + 1/3 * 1/15) R2 = 5/9 R2         R=∫Rnl
*(r)Rn’l’(r) r3dr

I↓ = (1/3|<2,2 |P1 |1,1> |2 + 2/3 |<2,1 |P1 |1,0> |2 + |<2,0 |P1 |1,-1> |2 ) R2

= (1/3 * 2/5 + 2/3 * 1/5 + 1/15) = 1/3 R2

Left polarisation:

I↑ / (I↑ + I↓ ) = 0.625          LCP at the L3 edge
I ↓ / (I↑ + I↓ ) = 0.375 

I↑ / (I↑ + I↓ ) = 0.375          RCP at the L2 edge
I ↓ / (I↑ + I↓ ) = 0.625

ml 2 1 0 -1 -2 3d↓

3d↑

|3/2, 3/2 > |3/2, 1/2 > |3/2, -1/2 > |3/2, -3/2 >



I↑left                 I↓ left I↑right I↓ right 

L2          1/9 R2           1/3 R2            1/3 R2         1/9 R2 

L3 5/9 R2 1/3 R2            1/3 R2           5/9 R2

Ni, Co metal (strong ferromagnets): only empty ρ↓

L2 total (LCP+RCP) ∝ (1/3 + 1/9) R2 = 4/9R2 

L3 total (LCP+RCP) ∝ (1/3 + 5/9) R2 =  8/9 R2

branching ratio L3: L2 = 2 : 1

L2 XMCD (LCP-RCP) ∝ (1/3 - 1/9) R2 = 2/9 R2

L3 XMCD (LCP-RCP) ∝ (1/3 - 5/9) R2 = -2/9 R2

branching ratio XMCD    ∆L3: ∆L2 = 1 : -1

In general: XMCD = (I↑left ρ↑ + I↓ left ρ↓) - (I↑right ρ↑ + I↓ right ρ↓)

= ρ↑ (I↑left - I↑right ) +  ρ↓ (I↓ left - I↓ right ) = ρ↑ (I↑left - I↓ left ) + ρ↓ (I↓ left - I↑left ) = 

= ( ρ↑ - ρ↓) (I↑left - I↓ left )                      XMCD ≠ 0 if ρ↑ ≠ ρ↓



Two-step model (Wu and Stöhr)

Step 1 : spin-polarised electrons emitted by the spin-orbit split 2p band
75% spin down and 25% spin up electrons at the L2-edge with LCP light
37.5% spin down and 62.5% spin up electrons at the L3-edge with LCP light

Step 2: the exchange split d-band acts as spin-detector.
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Spin-orbit splitting in d-band

2p3/2 → 4d3/2, 5/2

2p1/2 → 4d3/2, 5/2

d
d5/2

d3/2

- Spin-orbit in the 3d states

- Intensity shift from L2 to L3 edge → L3 : L2 ≥ 2 : 1

- for XMCD there is departure from the ∆L3 : ∆L2 = 1: -1; the
integrated XMCD signal is proportional to the orbital moment in the
3d band. 

B.T.Thole and G.v.d.Laan, Europhys.Lett. 4, 1083 (1987)



Sum rules of XMCD

Sum rules relate dichroism and total absorption to the ground-state orbital and
spin magnetic moment of the probed element and shell: 

L2,3-edges of Fe → Fe 3d-moments.

Orbital moment sum rule: 

<LZ> = [2l(l+1)(4l+2-n)]/[l(l+1)+2 - c(c+1)] •

[ ∫ j+ + j- dω(µ+ - µ -) / ∫ j+ + j- dω(µ+ + µ - + µ 0)] 

l = orbital quantum number of the valence state, 
c = orbital quantum number of the core state, 
n = number of electrons in the valence state 

µ+ (µ -) = absorption spectrum for left (right) circularly polarized light.

µ 0 = absorption spectrum for linearly polarized light, with polarization parallel quantization axis. 

j+ (j -) =  (l + 1/2) resp. (l - 1/2) absorption (ex. 2p3/2, 2p1/2)

B.T.Thole et al., Phys.Rev.Lett. 68, 1943 (1992)
M.Altarelli, Phys.Rev.B 47, 597 (1993)



For L2,3-edges c = 1 ( 2p ), l = 2 ( d ):
<LZ> = 2(10-n) • (∆L3 + ∆L2 )

/ ∫ L3+L2 dω (µ+ + µ - + µ 0)]

C.T.Chen et al., PRL 75, 152 (1995)

q = ∆L3 + ∆L2

r = µ+ + µ - = (2/3)(µ++ µ -+µ 0)

<LZ>= 4q (10-n) / 3r

Sum rules of XMCD



Spin moment sum rule

<SZ> + c2(n) <Tz>= c1(n)[ ∫ j+ dω (µ+ - µ -) - [(c+1)/c] ∫ j- dω (µ+ - µ -)] /

∫ j+ + j- dω (µ+ + µ - + µ 0)] 

c1(n) = 3c(4l + 2 - n)/[l(l+1) - 2 - c(c+1)]

c2(n) = {l(l+1)[l(l+1)+2c(c+1)+4]-3(c-1)2(c+2)2} / 6lc(l+1)(4l+2-n)

<TZ> = expectation value of magnetic dipole operator

T = S - r (r • s) / r2

which expresses the anisotropy of the spin moment within the atom

For L2,3-edges:

<SZ> + (7/2) <TZ> = (3/2)(10-n)[(∆L3 - 2∆L2)/ ∫ L3+L2 dω (µ+ + µ - + µ 0)] 

Sum rules of XMCD



C.T.Chen et al., PRL 75, 152 (1995)

= (3/2)(10-n)(p - 2 (q-p))/(3/2)r = 

= (3p - 2q)(10-n)/r

<SZ> + (7/2) <TZ> = 
(3/2)(10-n)[(∆L3 - 2∆L2)/ ∫ L3+L2 dω (µ+ + µ - + µ 0)]



An anisotropy of the spin moment (magnetic dipole) can be induced either by: 
- anisotropic charge distribution (quadrupole moment)

zero in cubic systems (isotropic charge)
enhanced at surfaces and interfaces

- spin-orbit interaction

small in 3d - metals
larger in 4d and 5d metals .

The magnetic dipole operator T



Stöhr, König [PRL 75, 3749 (1995)]

<Tx> + <Ty> + <Tz> = 0

with x, y and z perpendicular to each other and z // easy magnetization axis.

Measurement along three perpendicular directions (with sa-turating field) or at
« magic » angle: 

cos 54.7 0(Tx + Ty + Tz) = 0

allow to eliminate <Tz> and to obtain <Sz>  

Experimental determination of <T>

x
y

z

54.7 
0



Validity and applicability of sum rules

Determination of Lz

- main approximation R2p3/2 = R2p1/2  :
according to Thole et al. ( PRL 68, 1943 (1992))   the errors in <Lz>are ∼1%  
for transition metals

- sum rules have been obtained from atomic calculations :
according to Wu et al. (PRL 71, 3581 (1993)) who performed band structure 
calculations, the errors are 5-10%. 

Determination of Sz

- L2 and L3 edge intensities need to be separated: 
we suppose:   
spin orbit coupling >> Coulomb interaction 
not true for early transition metal

- Tz is supposed to be small: true for cubic systems but not at
surfaces/interfaces 



Sources of errors:
- determination of the background µ+ + µ - + µ 0

- rate of circular polarization
- number of electrons n

Experimental application of sum rules

<LZ>= 4q (10-n) / 3r

<Sz> + (7/2)<TZ> = (3p - 2q)(10-n)/r



Summary: 

-XMCD is an element selective probe of magnetisation

- XMCD is proportional to <M> along the propagation vector k of the x-ray beam

- Sum rules allow to obtain separately orbital and spin contributions to the 
magnetic moments from the integrated XMCD signal. 



Axial crystal field (symmetry O2
0 )(Yb)

CF: no splitting of +MJ and -MJ → no circular dichroism



Influence of the core-hole

Shape of spectra: intensity increase at threshold

Mixing of 2p3/2 and 2p1/2 character if 2p spin-orbit coupling is small
→ branching ratio changed

J.Schwitalla and H.Ebert, Phys.Rev.Lett. 80,  4586 (1998).

O: calc. without with electron- core hole interaction; ♦
experiment



Influence of the bandstructure

Valence band composed of different band states φik , expanded using local 
spherical harmonics:

φik(r) = Σ alm,ik Rnl,ik(r)Ylm
S,

k = wave vector, r = position , S = spin (up or down)

Transitions from the 2p-level to φik calculated as before, replacing the factors
../√5 by alm,ik. Example:

<φik |P-1|2p3/2>|2 =  (1/45){18|a2-2|2 + 6|a2-1|2 + |a20|2}R2.

Total absorption: sum over i, integrate over Brillouin zone.

N.V.Smith et al., Phys.Rev.B 46, 1023 (1992)



Si K-edge absorption of NiSi2 compared to Si p-DOS.

Right: including energy dependence of matrix elements

Discrepancies:

- Influence of core hole

- Dynamics of transition

Density of states vs. XAS spectrum



• Core hole pulls down the DOS
• Final State Rule: Spectral shape 

of XAS looks like final state DOS 
• Initial State Rule: Intensity of XAS 
• is given by the initial state 

Phys. Rev. B. 41, 11899 (1991)Phys. Rev. B. 41, 11899 (1991)

Core hole effect



Spin-orbit splitting in d-band

The sum of transition intensities between a pair of initial and final states is
the same for LCP and LCP. 

d3/2

d5/2

XMCD is present only when the different mj states have different occupation 
numbers.

d3/2

+ + +- - -



d3/2-states occupancies:
a (mj=-3/2), b (mj=-1/2), c (mj=1/2) and d (mj=3/2) 

d5/2-states occupancies:
e (mj=-5/2), f (mj=-3/2), g (mj=-1/2) , h (mj=1/2) i (mj=3/2)
j (mj=5/2) 

∆IL2 = d/3 + c/9 - b/9 - a/3 = (1/9)[3(d-a)+c-b]

∆IL3 = (2/225)[3(d-a)+c-b] + (2/25)[5(j-e)+3(i-f)+h-g].

<lz> = <l,s,j,mj | lz | l,s,j,mj>
<sz> = <l,s,j,mj | sz | l,s,j,mj>

<lz>3/2 = -3/5 [3(a-d)+b-c]
<sz>3/2 = 1/10 [3(a-d)+b-c]
<lz>5/2 = -2/5 [5(e-j)+3(f-i)+g-h]
<sz>5/2 = -1/10 [5(e-j)+3(f-i)+g-h]

<lz> = <lz>3/2 + <lz>5/2 ;    <sz> = <sz>3/2 + <sz>5/2

<lz> = -5 (∆L3 + ∆L2) ;    <sz> = -5/4 ∆L3 + ∆L2



Many body effects

N.V.Smith et al., one electron model T.Jo, G.A.Sawatzky, PRB 43, 8771 
(1991), many body calculation

Anderson impurity model: ground state of Ni superposition of states with d8, d9v
and d10v2, where v denotes a hole in the d-band of a neighboring atom:

|g> = A|3d10v2> + B|3d9v> + C|3d8>

G.v.d.Laan, B.T.Thole, J.Phys.Condens.Matter 4, 4181 (1992): 18% d8, 49% d9, 
33% d10

Satellite in dichroism: due to 3d8 character in ground-state



↓ d5/2
d3/2

2p1/2

2p3/2

d ↑

xL3 L2

spin-orbitexchange

2P1/2

2D

2P3/2 x
2D5/2

2D3/2

Configuration picture: example of Ni metal
p6d9 → p5d10 or d1 → p1

One electron picture: p → d transition



XMCD calculation

σq ∝ Σq |< Φf | eq ⋅ r | Φi >|2 ρf (hω - Ei )

eq: x-ray polarisation unit vector
r: electron position

z: x-ray propagation direction
r = xex + yey + zez

e =  1/√2 (ex + i ey)   (left polarisation)
e =  1/√2 (ex - i ey)   (right polarisation)

P1    = e1 ⋅ r = 1/√2 (x + iy)   (left)

P-1 =  e-1 ⋅ r = 1/√2 (x - iy)   (right)

convention for the sign of XMCD with respect to the relative orientations of 
photon spin and magnetisation direction:     

XMCD = I ↑ ↓ - I↓ ↓ = I ↑ ↓ - I ↑ ↑
M // - z axis 
(H // -z then M and majority spin // z)



Influence of the bandstructure

Valence band composed of different band states φik , expanded using local spherical harmonics:

φik(r) = Σ alm,ik Rnl,ik(r)Ylm
S,

k = wave vector, r = position , S = spin (up or down)

Transitions from the 2p-level to φik calculated as before, replacing the factors ../√5 by alm,ik. 
Example:

<φik |P-1|2p3/2>|2 =  (1/45){18|a2-2|2 + 6|a2-1|2 + |a20|2}R2.

Total absorption: sum over i, integrate over Brillouin zone.


