Magnetisation processes at nanoscale

Magnetic properties of clusters magnetic moment magnetic order magnetocrystalline anisotropy finite temperature properties

Magnetization processes in exchange-coupled nanosystems coercivity ultra-soft and remanence enhancement exchange-spring nanocomposites magnetostrictive nanocomposites exchange-bias Dipolar interactions in heterogeneous magnetic systems

Finite-size effects in fine particles: magnetic and transport properties X. Battle and A.Labarta, J. Phys. D: Appl. Phys. 35 (2002) R15

Specific properties may be predicted at the nanomater scale

Preparation and measure of the magnetic moment of free metal clusters

Extraction of the cluster intrinsic magnetic moment

Magnetism of very small ferromagnetic clusters

2 opposite effects :

- band narrowing for surface atoms
- contraction of the whole cluster

Onset of ferromagnetism in Rh clusters

$\mu_{\text{eff}} = \mu \mathcal{L}\left(\frac{N\mu B}{kT}\right) = \mu \left[\text{coth} \right]$	$\left(\frac{N\mu B}{kT}\right)$	$-\frac{kT}{N\mu B}$
---	----------------------------------	----------------------

Cluster	μ_{expt} (μ_B)	μ (μ_B)
Rh ₁₂	0.027 ± 0.009	$0.92{\pm}0.16$
Rh_{13}	0.025 ± 0.009	$0.88 {\pm} 0.16$
Rh_{14}	0.009 ± 0.009	$0.66 {\pm} 0.33$
Rh_{15}	0.017 ± 0.009	$1.02{\pm}0.16$
Rh_{16}	0.025 ± 0.009	1.09 ± 0.17
Rh_{17}	0.016 ± 0.009	$0.45 {\pm} 0.17$
Rh_{18}	$0.016 {\pm} 0.009$	$0.68 {\pm} 0.19$
Rh_{19}	0.022 ± 0.009	$0.95 {\pm} 0.15$
Rh_{20}	0.007 ± 0.009	$0.38 {\pm} 0.38$
Rh_{21}	0.011 ± 0.009	$0.49 {\pm} 0.20$
Rh ₂₂	0.012 ± 0.009	$0.53 {\pm} 0.20$
Rh_{23}	0.011 ± 0.009	$0.40 {\pm} 0.20$
Rh_{24}	0.007 ± 0.009	$0.43 {\pm} 0.20$
Rh_{25}	0.007 ± 0.009	$0.37 {\pm} 0.17$
Rh_{26}	0.014 ± 0.009	$0.50 {\pm} 0.16$
Rh_{27}	0.016 ± 0.009	$0.50 {\pm} 0.15$
Rh_{28}	0.011 ± 0.009	$0.45 {\pm} 0.18$
Rh_{29}	0.007 ± 0.009	$0.41 {\pm} 0.20$
Rh_{30}	0.012 ± 0.009	$0.42{\pm}0.16$
Rh_{31}	0.012 ± 0.009	$0.43 {\pm} 0.16$
Rh32	0.014 ± 0.009	$0.35 {\pm} 0.11$

Measured on free clusters

Band structure calculations

Non-saturation of magnetisation in ferrimagnetic nanoparticles

Non-saturation cannot be attributed to anisotropy would be unrealistically large

Non-collinear structure due to missing bonds in surface

$$J_{AA} = -21.0, \quad J_{AB} = -36.0, \quad J_{AB'} = -28.1$$

 $J_{BB} = -22.0, \quad J_{BB} = +2.0, \quad J_{B'B'} = -8.6$

Ferromagnetism of very small NiO nanoparticles

calculation

experiment

NiO nanoparticles

High non-collinearity due to missing bonds + exchange striction

Mössbauer study of very small Fe clusters

$$B_{obs} = B_0 \mathcal{L}(\mathbf{x}) - B \quad \mathbf{x} = \frac{\mu B}{kT}$$

$$B_{\rm obs} = B_0(1 - kT/\mu B) - B$$
.

 μ = cluster moment Thus cluster volume deduced

Cluster magnetic anisotropy

$$B_{\rm obs} = B_0(1 - kT/2K_{\rm eff}'V)$$

 α -Fe K = 0.5 10⁵ J/m³

Orbital magnetic moment in Fe clusters

Temperature dependence of the magnetization Curie temperature

Tc reduced due to reduction in mean exchange interactions At low T, M_s does not decrease due to the existence the energy gap

Coercivity

Main magnetic functional properties of ferromagnets

Coercivity

Coercive field for coherent rotation (Stoner-Wohlfarth)

 $E = K_1 \sin^2 \theta + \mu_0 M_s H \cos \theta$

 $\partial E / \partial \theta = K_1 \sin 2\theta - \mu_0 M_s H \sin \theta$ = sin θ (2 K₁ cos $\theta - \mu_0 M_s H$)

 $\begin{array}{ll} E_{min} & : & \sin\theta = 0, \ \theta = 0 \ \text{or} \ \pi \\ E_{max} & : & \cos\theta = \mu_0 M_s H \ / \ 2K_1 \end{array}$

Coercive field : E_{min} and E_{max} join together :

 $\mu_0 H_c \,{=}\, 2K_1 \,{/}\, \mu_0 M_s \,{=}\, H_A$

Dipolar interactions not equivalent to magnetocrystalline anisotropy **Global phenomenon** Local phenomenon Anisotropy due to dipolar interactions Curling ٨7 2 4 4

Non uniform configuration allows dipolar energy gain at the expense of exchange

Anisotropy due to dipolar interactions

Coherent rotation : $H_c(\theta) = H_A / (\sin^{2/3}\theta + \cos^{2/3}\theta)^{3/2}$

Reversal by curling :

Magnetocrystalline anisotropy : Brown paradox

 $2A_{\rm ex}d^2\theta/dz^2 + K_1\sin 2\theta - \mu_0 M_{\rm s}H\sin\theta = 0$

 E_{\min} : $\theta = 0$, $d\theta/dz = 0$

$$E_{\max}: \cos\theta = 1 - \frac{2A_{exch}}{\mu_0 M_s H_A} \frac{1}{\sin\phi} \, \partial^2\theta / \partial z^2)$$

Reversal should occur by coherent rotation with $H_c = H_A$

influence of defects on reversal

Domain wall width : Characteristic dimension for reversal

Correlation length in Exchange-coupled nanograins

Anisotropy lost : volume term

Exchange lost : surface term

$$\Rightarrow \text{ correlation length } \xi \\ \text{ correlation volume } V = \xi^3 \\ \xi = \pi \sqrt{\frac{A}{K}} \text{ with } \overline{K} = K_g \sqrt{\frac{v_g}{V}} \\ \xi = \frac{\delta_g^4}{v_g} \\ \chi_g = \frac{1}{\sqrt{N}} \end{cases}$$

Correlation length and anisotropy

Herzer IEEE Trans. Mag. (1989)

$$\xi = \frac{\delta_g^4}{v_g} = \alpha^3 \delta_g \quad \text{with} \quad \alpha = \frac{\delta_g}{D}$$

$$N = \left(\frac{\delta_g}{D}\right)^{12}$$

$$V_g = 10 \text{ nm}$$
soft $\delta_g \approx 100 \text{ nm} \xi \approx 100 \mu \text{m}$
hard $\delta_g^g \approx 5 \text{ nm} \xi \approx 1 \text{ nm}$

in soft materials

$$\overline{K} = K_g \sqrt{\frac{\nu_g}{V}} = K_g \frac{1}{\alpha^6}$$

Nanoscale materials development for future magnetic applications M.E. McHenry and D.D. Laughlin Acta; Mater. 48 (2000) 223

ultra-soft magnetic properties expected

Exchange-coupled soft nanograins Anisotropy and Coercivity

Anisotropy averaged over many particles : extremely small

D = 10nm, $\delta_g = 100$ nm $\alpha = 10$ $K = 10^{-2}$ J/m³ ➡Ultra-soft magnetic properties

How to combine large M_s , large χ and high resistivity ?

Fe_{74.5-x}Cu_xNb₃Si_{13.5}B₉ annealed 1h at T_a • x_{cu}= 0 at% • x_{Cu}= 1 at% 800 900 500 600 700 Arnealing Temperature, T_a (°C)

Exchange-coupled hard nanograins

A ~ 10⁻¹¹ J/m K ~ 10⁷ J/m³ $\delta_{g} \sim 5 \ 10^{-9} m$ $\Rightarrow \alpha = 0.5$

no anisotropy averaging

➡ Anisotropy remains large

→ Hard nanomaterials

Remanence enhancement in NdFeB ribbons

Remanence enhancement and coercivity

K' ~ K $(1-\frac{1}{2\alpha})^3$

 $H_{c} \sim (H_{A})' (1 - \frac{1}{2\alpha})^{3}$

NdFeB nanocomposites

(R. Coehoorn et al. J. de Phys. (Paris) (1988))

Soft phase hardening in nanocomposites

Nucleation field in various RM/Fe multilayer nanocomposites

Skomski and Coey, Phys. Rev. B48 15812 (1993)

Propagation field

Propagation field in RFeB spring magnets

(S. David et al. 1999)

Conclusion : large H_c requires nanoparticle size around 10 nm +very large anisotropy

Giant magnetostriction in multilayers

Magnetostriction : anisotropy induced by deformation

Exploit the concept of coupled nanograins to get low anisotropy field (large magnetization of Fe)

{TbFeCo/YFeCo}_n multilayers

(Duc, Giang et al., JMMM, to be published)

Magnetostriction in {TbFeCo/YFeCo}_n multilayers

(J. Betz et al. JAP (1998), N.H. Duc et al. JMMM (2001))

n { Soft YFeCo layer Magnetostrictive TbFeCo

Substrate

Giant magnetostrictive susceptibility $\chi_{//} = 13 \times 10^{-2} \text{ T}^{-1} \text{ at } \mu_0 \text{H} = 1.8 \text{ mT}$

Torque due to the field is largely enhanced, due to large magnetization of the Fe layer

Magnetostrictive micromotors

Exchange-bias

Oxidised Co nanoparticles

FC hysteresis loop : -shifted with respect to M axis - increased coercivity

Meiklejohn and Bean, Phys. Rev. 102 (1956) 1413, Phys. Rev. 105 (1957) 904 Exchange bias

J. Nogués and Ivan K. Schuller

J. Mag. Magn. Mater. 192 (1999) 203

Exchange anisotropy—a review A E Berkowitz and K Takano

J. Magn. Magn. Mater. 200 (1999)

Spin valve systems

B. Dieny et al. Phys. Rev. B (1991) 43 (1297)

$$H_E = \frac{J_{\rm ex} \mathbf{S}_{\rm FM} \cdot \mathbf{S}_{\rm AFM}}{a^2 M_{\rm FM} t_{\rm FM}}$$

.

$$J_{ex}S_{FM}S_{AFM} \approx 150 \text{ K}$$
$$\mu_0M_{FM} = 1.8 \text{ T}$$
$$t_{FM} = 10 \text{ nm}$$
$$\implies \mu_0 H_{E(calc)} = 2.3 \text{ T}$$
$$H_{E(exp)} \approx 0.1 H_{E(calc)}$$

Coupling mechanisms in exchange-bias

$$\overrightarrow{} \overrightarrow{} \overrightarrow{\phantom{$$

$$\begin{array}{c} \uparrow & \uparrow & \uparrow & \uparrow \\ \rightarrow & \leftarrow & \rightarrow \\ \leftarrow & \leftarrow & \leftarrow & \leftarrow \\ \rightarrow & \leftarrow & \leftarrow & \leftarrow \\ \rightarrow & \leftarrow & \leftarrow & \leftarrow \\ \end{array}$$

Uncompensated interface

$$E = -\alpha \mu_0 \mu_{AFM} H_{exch}$$

Mechanisms for exchange bias R.L. Stamps J. Phys. D. : Appl. Phys., 33 (2000) R247 Compensated interface $E = -\frac{1}{2} \chi_{AFM} \mu_0 H_{exch}^2$ with $\chi_{AFM} = 1/W$

Limit reached for E \approx 25 kT Co : V \approx 100 nm³ Ferromagnetic nanoparticles in a non-magnetic or antiferromagnetic matrix

Matrix \checkmark (C, Al₂O₃, CoO)

Co nanoparticles.

Average particle size 3-4 nm

"cluster gun" + conventional sputtering

Dependence of the blocking temperature on the nature of the matrix

Non-magnetic matrix : $T_B \approx 30K$

Beating the superparamagnetic limit with exchange-biasV. Skumryev, S.Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord et J. NoguèsNature, 423 (2003) 850

Possible coupling schemes for Co/CoO

$$\sqrt{N/N} = \frac{27}{750} = 4\%$$

$$E = \frac{4}{100} \mu_0 \mu_{AFM} H_{exch} \quad \mu_0 H_{exch} = 84T$$

$$E = -\frac{1}{2} \chi_{AFM} \mu_0 H_{exch}^2$$

$$E_{coupling} \approx -10^{-22} \text{ J}$$

$$E_{coupling} \approx -10^{-21} \text{ J}$$

Co FM moment aligns along the dominant AFM sublattice

FM rotation within the AFM easy plane

Moment configuration after reversal

FM moments align perpendicularly to the AFM moments and induce canting of the AFM moments

Magnetisation reversal under field

FM moment rotation occurs in the plane perpendicular to the AFM easy axis

To this approximation, the final state is identical to the initial one

Co/CoO coercive field

$$\mathsf{E} = -1/2 \, \Delta \chi_{\perp} \, \mu_0 H_{exch}^2 \quad \text{with } \chi_{\perp} = \frac{1}{w(1+\alpha)}$$

$$\alpha = \frac{K_1}{2w\mu_0 M_{AFM}^2}$$

 $K_1 = 2.7 \ 10^7 \ J/m^3$

Calculated
$$\mu_0 H_c = 1.3 T$$

Experimental $\mu_0 H_c = 0.76 T$

Other mechanism required to explain exchange-bias

Origin of exchange bias in Co/CoO

Pre-existing canting at the CoO interface

Exchange bias at Co/CoO interface

Average canting angle to account for $\mu_0 H_E = 0.74 \text{ T} \approx 20^{\circ}$

usual value for oxide nanoparticles

Hard FePt prepared by sheath rolling

Hard-Magnetic FePt alloys prepared by cold-deformation N.H. Haï, N.M. Dempsey, D. GivordJ. Magn. Magn. Mater. 262 (2003) 353

$\{Fe(75\mu m)/Pt(100\mu m)\}_{10}$

- 49 at% Fe
- stack dimensions: 1.8×4.5×15 mm³

 \approx 100 passes per cycle ; $t_{init}/t_{final} \approx 10$ No stress-relieving heat treatment

FePt : in-plane versus out-of-plane magnetisationmeasurements

Demagnetising field corrections in a coercive system

Implicit assumption : Magnetisation is homogeneous Internal field is constant

M↑ H_D↓

In particular : $M = 0 \implies H_D = 0$

 $(N_M - N_b)^{\perp} \neq (N_M - N_b)^{\prime\prime} =>$ difference in slope of OP and IP

Heterogeneous nanostructure

FePt/Fe₃Pt composites

Dipolar interactions in a heterogeneous system

Dipolar interactions in nanocomposites

Magnetisation reversal in a system of dipolar-coupled grains

FePt/Fe₃Pt calculated versus experimental M(H)

