Self-organization on surfaces: an overview

O.Fruchart

Laboratoire Louis Néel, Grenoble, France.

(1. Introduction)

- 2. Self-assembled epitaxial growth
- 3. Self-organized epitaxial growth
- 4. 3D self-organization via multilayer stacking
 - 5. Perspectives of self-organization

6. X-ray investigation of SO systems

References

Laboratoire Louis Néel, Grenoble, France.

(1. Introduction)

2. Self-assembled epitaxial growth

- 3. Self-organized epitaxial growth
- 4. 3D self-organization via multilayer stacking
- **5.** Perspectives of self-organization
- 6. X-ray investigation of SO systems

References

Macroscopic concept: surface energies

Laboratoire Louis Néel, Grenoble, France.

Olivier Fruchart - 2/09/2003 - p.5 http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/

Many parameters for spontaneous island growth: Self-assembly

Olivier Fruchart - 2/09/2003 - p.6

> $In_xGa_{1-x}As/GaAs$ quantum dots (OD)

S.Z.Chang et al., J.Appl.Phys.73,4916(1993)

Laser diodes

Improvements : $\frac{? L}{L} \approx 4\%$ Nishi et al., Appl.Phys.Lett.74, 1111(1999)

Fe/Mo(110) elongated islands

AFM

Target : SmFe₂

P.-O.Jubert *et al.*, LLN.

°ks

Laboratoire Louis Néel, Grenoble, France.

Olivier Fruchart - 2/09/2003 - p.7 http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/

Self-assembly : shape of dots

Wulff's theorem

Free crystal

$$\frac{\gamma_i}{h_i} = \text{Constant}$$

Wulff Kaishev's theorem

Supported crystal (growth on surfaces)

$$\frac{\gamma_i}{h_i} = \frac{\gamma_{\rm S} - \gamma_{\rm int}}{h_{\rm int}} = \text{Constant}$$

Self-assembly : shape of dots

Very general phenomenon : many systems are suitable.

H.J.Elmers et al., Phys.Rev.Lett.73, 898(94)

Solution State State

Ch. Würsch et al., J. Magn. Magn. Mater 177-181, 617 (1998).

Parameters: substrate symmetry and temperature

Size and density of the dots can be tuned nearly independently

Laboratoire Louis Néel, Grenoble, France.

Olivier Fruchart - 2/09/2003 - p.10

(1. Introduction)

- 2. Self-assembled epitaxial growth
- **3.** Self-organized epitaxial growth
 - 4. 3D self-organization via multilayer stacking
 - **5.** Perspectives of self-organization
 - 6. X-ray investigation of SO systems

References

Self-assembly + 'long-range' positional order between dots.

Dot-dot interactions << dot-substrate : the organization must be supplied by the substrate

Laboratoire Louis Néel, Grenoble, France.

Olivier Fruchart - 2/09/2003 - p.12 http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/

J.Hauschild et al., Phys.Rev.B57, R677(1998)

M. Bode et al, J. Electr. Spectr. Rel. Phenom. 114– 116, 1055 (2001)

Laboratoire Louis Néel, Grenoble, France.

Olivier Fruchart - 2/09/2003 - p.13 http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/

Overlayer dislocations array. Ex: dots (OD)

H.Brune et al., Nature **394**, 451 (1998)

Ag(110K)/Ag(2ML, 400K annealed at 800K)/Pt(111)

Also : improvement of size uniformity of the dots

D.Y.Petrovykh, Surf.Sci. 407, 189 (1998)

Laboratoire Louis Néel, Grenoble, France.

Olivier Fruchart - 2/09/2003 - p.14

Au(111) > secondary 'chevron' reconstruction

Laboratoire Louis Néel, Grenoble, France.

Olivier Fruchart - 2/09/2003 - p.16

Self-organized growth on Au(111)

Fe, Co, Ni (etc.) nucleation: atomic place exchange mechnism with Au atoms

Example: 0.002ML Ni@300K

Element	Surface free energy (eV)	Heat of sublimation (eV)	
Ag	0.50	2.95	
Al	0.56	3.39	
Cu	0.69	3.51	
Au	0.72	3.79	
Ni	0.90	4.45	
Co	Co 0.94 4.4		
Fe	0.96	4.32	

b)

J.A.Meyer et al., Surf.Sci.365, L647 (1996)

0.25ML Ni@300K : 1ML-high dots

W.G.Cullen et al., Surf.Sci.420, 53 (1999)

Leading parameter : deposit has a higher surface energy.

(and Au atoms stress near chevrons)

Laboratoire Louis Néel, Grenoble, France.

Olivier Fruchart - 2/09/2003 - p.18 http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/

Self-organized **adsorbtion**: N on Cu(100)

T.M.Parker, Phys.Rev.**B56**, 6458(1997)

Self-organized growth on reconstructions
Tl on Si(111) 7x7

Laboratoire Louis Néel, Grenoble, France.

Olivier Fruchart - 2/09/2003 - p.19 http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/

Laboratoire Louis Néel, Grenoble, France.

Olivier Fruchart - 2/09/2003 - p.20

Lateral modulation in ultrathin films

Stéphane ANDRIEU: possible link with Fe/V(110)?

Laboratoire Louis Néel, Grenoble, France.

Olivier Fruchart - 2/09/2003 - p.21

- Self-organization generally from substrate, not from deposit !
- Relies on surface science fundamental investigations

Good pattern does not necessarily imply good overgrowth

Laboratoire Louis Néel, Grenoble, France.

Olivier Fruchart - 2/09/2003 - p.22

Anisotropy barrier ~KV

Example: Co/Au

(1. Introduction)

- 2. Self-assembled epitaxial growth
- 3. Self-organized epitaxial growth
- 4. 3D self-organization via multilayer stacking
 - **5.** Perspectives of self-organization
 - 6. X-ray investigation of SO systems

References

3D Self-organization : lateral modulation of composition

Principle

Strain release Here: accumulation during growth

R. D. Twesten et al, PRB60, 13619 (1999)

[Cf Grinfeld instability: M. A. Grinfeld, Dok. Akad. Nauk SSSR 290, 1358 (1986)]

Experiments

InAs/AlAs short-period multilayers

R. D. Twesten et al, PRB60, 13619 (1999)

Laboratoire Louis Néel, Grenoble, France.

Olivier Fruchart - 2/09/2003 - p.25 http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/

InAs / GaAs(100)

Laboratoire Louis Néel, Grenoble, France.

Olivier Fruchart - 2/09/2003 - p.26 http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/

3D self-organization : effect of strain

3D self-organization engineering : template plus overgrowth

G. Capellini *et al.*, APL82, 1772 (2001)

Laboratoire Louis Néel, Grenoble, France.

Olivier Fruchart - 2/09/2003 - p.28 http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/

Co/Al₂O₃ granular system (sputtering)

		The second second	-
	-		
1000	-	-	
-		-	
S. S.	50	nm	· ····································

Q.Xie et al., Phys.Rev.Lett.75(13), 2542 (1995)

Olivier Fruchart - 2/09/2003 - p.31

Laboratoire Louis Néel, Grenoble, France.

Olivier Fruchart - 2/09/2003 - p.32 http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/

Laboratoire Louis Néel, Grenoble, France.

Olivier Fruchart - 2/09/2003 - p.33 http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/

- Self-organization nearly undisturbed
- Pillars with 2:1 vertical aspect ratio
- Unclear to this point :
 - Exchange mechanism
 - Limitating factors ?
 - Composition, microstructure ?

Laboratoire Louis Néel, Grenoble, France.

Olivier Fruchart - 2/09/2003 - p.37 http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/

✤ Is there an intermediate world ?

Laboratoire Louis Néel, Grenoble, France.

Olivier Fruchart - 2/09/2003 - p.39

Fe/Mo(110) - the surface

Buffer layer growth : O. Fruchart, S. Jaren, J. Rothman, Appl. Surf. Sci. 135, 218 (1998)

Laboratoire Louis Néel, Grenoble, France.

Olivier Fruchart - 2/09/2003 - p.40 http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/

Fe thick stripes on W(110)-Mo(110)

150°C deposition

Laboratoire Louis Néel, Grenoble, France.

Olivier Fruchart - 2/09/2003 - p.41

(1. Introduction)

- 2. Self-assembled epitaxial growth
- 3. Self-organized epitaxial growth
- 4. 3D self-organization via multilayer stacking
- **5.** Perspectives of self-organization
 - 6. X-ray investigation of SO systems

References

Laboratoire Louis Néel, Grenoble, France.

Olivier Fruchart - 2/09/2003 - p.43 http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/

Combination of patterning and self-assembly

Area selective epitaxy (ASE) > dots

GaAs / GaAs

- **Step 1**: Deposition of SiO₂ layer \succ
- Step 2: Ex-situ lithography on oxide layer, >plus wet chemical etching
- Step 3: Growth of GaAs through windows, either in dot or antidot array.

(c)

2µm

(a)

(d)

(b)

H. Hasegawa, J. Cryst. Growth 227-228, 1078 (2001)

(e)

Laboratoire Louis Néel, Grenoble, France.

2) U J Z U Ú J

(f)

[110]

http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/

500nm

2µm

500nm

[110]

Area selective epitaxy (ASE) > stripes

ches -

Laboratoire Louis Néel, Grenoble, France.

Olivier Fruchart - 2/09/2003 - p.47 http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/

Self-organization : thin layers bonding

Step 1: wafer bonding

Screw dislocations

J. L. Rousseau *et al.*, APL80, 4121 (2002)

CEA-Grenoble

Step 2: template for growth

Chemical etching > corrugation enhanced
Growth (here: Si)

J. Eymery, Habilitation (2003)

Laboratoire Louis Néel, Grenoble, France.

Olivier Fruchart - 2/09/2003 - p.48 http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/

L1₀ phase : alternation of Fe and Pt monoatomic planes → extremely high magnetocristalline anisotropy K

(1. Introduction)

- 2. Self-assembled epitaxial growth
- 3. Self-organized epitaxial growth
- 4. 3D self-organization via multilayer stacking
- **5.** Perspectives of self-organization
- **6.** X-ray investigation of SO systems

References

Laboratoire Louis Néel, Grenoble, France.

Olivier Fruchart - 2/09/2003 - p.50 http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/

Laboratoire Louis Néel, Grenoble, France.

Olivier Fruchart - 2/09/2003 - p.51

Collaborators

G. Renaud, M. Noblet, O. Ulrich DRFMC/SP2M/IRS (CEA), Grenoble

J.-P. Deville, A. Barbier, F. Scheurer, J. Mané-Mané IPCMS (CNRS/ULP/ECPM), Strasbourg

V. Repain, G. Baudot, S. Rousset GPS-Jussieu, Paris

Laboratoire Louis Néel, Grenoble, France.

Olivier Fruchart - 2/09/2003 - p.52 http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/

Laboratoire Louis Néel, Grenoble, France.

Olivier Fruchart - 2/09/2003 - p.53 http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/

GISAXS : inter- and intra-row order

INTRA-ROW ORDER: SUPER-CRYSTAL DQ/Q=3%

INTER-ROW ORDER: LIQUIDE-TYPE

> K=8.5nm s=2.1nm

Laboratoire Louis Néel, Grenoble, France.

Olivier Fruchart - 2/09/2003 - p.54 http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/

GISAXS on Co/Au(111) : « crystallography » on a three-fold textured super-crystal

Laboratoire Louis Néel, Grenoble, France.

Olivier Fruchart - 2/09/2003 - p.56 http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/

Laboratoire Louis Néel, Grenoble, France.

Olivier Fruchart - 2/09/2003 - p.58 http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/