Nanomagnetometry

W. Wernsdorfer, E. Bonet Orozco and B. Barbara
Lab L. Néel - CNRS, Grenoble, France
A. Benoit
CRTBT - CNRS , Grenoble, France
D. Mailly
L2M, Bagneux, Paris, France
and a lot of collaborators

Different techniques

- Torque balance [Morrish 1956]
 - "Rotation method" [Knowles 1978]
 - Vibrating sample magnetometer 10⁷ µ_B [Richter 1989]
 - Lorentz microscopy 10⁷ μ_B [Salling 1991]
 - MFM 10⁷ µ_B [Chang 1993, Ledermann 1994]
 - Hall sensor $10^6 \mu_B$ [Kent 1994]
 - Micro SQUID 10⁴ µ_B [Wernsdorfer 1995]
 - Transport measurements $10^4 \mu_B$ [Giordano 1995]

Semi-conductor heterostructure : GaAs - GaAlAs (à 4K) electron density : $n = 3 \ 10^{11} \text{ cm}^{-2}$ mobility : 800 000 cm²V⁻¹s⁻¹ Hall resistant : 2000 \Box/T resistance : 20 \Box at 4K and 2000 \Box at 300K

2D Hall bridge

A.D. Kent, D.D. Awschalom et al., JAP, 76, 6656 (1994) sensitivity of $10^6 \mu_B$

A.K. Geim et al. APL, 71 (16), (1997)

Luise Theil Hansen, <theil@meyer.fys.ku.dk> sensitivity of 10⁴ µ_B

Electric transport measurements

Magnetoresistance

K. Hong, N. Giordano, JMMM, 151, 396 (1995) depinning of a domain wall in an isolated Ni wires

F. Coppinger et al., PRL 75, 3513 (1995)

Single domain switching of small ErAs clusters investigated using telegraph noise spectroscopy

Giant magnetoresistance

V. Gros, A. Fert et al. Co/Cu/Co structures

Spin-dependent tunneling with Coulomb blockade

L.F. Schelp, A. Fert et al., PRB, 56. R5747 (1997) Co/Al2O3/Co tunnel junctions with cobalt clusters in the Al2O3 layer

Superconducting Quantum Interference Device (SQUID)

Different types of Josephson junctions :

- point junctions
- tunnel junctions
- micro bridge junctions

Theoretical limit : $1 \ \mu_{\text{B}}$!!!

with a coupling factor of $4*10^7 \,\mu_B / \Phi_c$

Roadmap of the micro-SQUID technique Quantum limit of a SQUID

Studied nanostructures

Micro-SQUID magnetometry

- fabricated by electron beam lithography (D. Mailly, LPM, Paris)
- sensitivity : $10^{-4} \Phi_0$

≈
$$10^2 - 10^3 \mu_B$$
, i.e. $(2 \text{ nm})^3$ of Co
≈ $10^{-18} - 10^{-17}$ emu

SQUID details

- fabricated by electron beam lithography *D. Mailly, L2M - CNRS, Bagneux*
- dimension : $1 2 \mu m$
- material : Nb
- temperature : < 7K
- direct coupling with the SQUID
- sensitivity : $10^{-4} \Phi o$ $\Rightarrow \qquad \approx 10^{4} \mu_{B} \text{ i.e. } (6nm)^{3} \text{ of Co}$ $\Rightarrow \qquad \approx 10^{-16} \text{ emu}$

conventional SQUID : 10⁻⁷ emu

Naïve theory

Critical current measurements

Ι

μο Η(μΤ)

I_c statistics

Histogram of 60000 Ic measurements

- $\begin{array}{l} \bullet \mbox{ Magnetization measurement : average of N} \\ measurements \mbox{ of } I_c \\ precision \mbox{ increases with } \end{array}$
- limitation of the cycling frequency of I_c measurement : length of the current ramp ≈ 100 µs cooling of SQUID ≈ 1 µs
- sensitivity : 10000 measurements per second :

Ex. : our sensitivity : $10^4 \mu_B$ \approx cluster of Co of 5 nm in diameter

Feedback mode

- measure I_c continuously
- if $I_c > I_{c0}$, apply positive external flux
- if $I_c < I_{c0}$, apply negative external flux
- \Rightarrow external flux compensates sample's fux

Jump detection: "cold mode"

- SQUID polarized below the critical current
- magnetization jump \sqcup SQUID transition
- the SQUID heats only after the magnetization jump

Blind mode

- apply a test field, we may (or may not) have reversal
- measure after the fact with a second field
- \Rightarrow field out of plane, high T, microwaves...

Ex: "large" particles

Co particle: 70 nm x 50 nm x 25nm

> Ni wires: (40-100) nm x (4-5) μm

Smaller systems

FeS particle: length 200 nm, diameter 20 nm

> Co nanoparticles: diameter 20 nm

Coupling between nanoparticles

3 nm cobalt cluster

DPM - Villeurbanne: LASER vaporization and inert gas condensation source Low Energy Cluster Beam Deposition regime

HRTEL along a [110] direction fcc - structure, faceting

blue: 1289-atoms truncated octahedron grey: added atomes, total of 1388 atomes

Ideal case: truncated octagedron with 1289 or 2406 atoms for diameters of 3.1 or 3.8 nm

Low energy cluster beam deposition

Micro-SQUID magnetometry

Acknowledgment: B. Pannetier, F. Balestro, J.-P. Nozières