Ferromagnet/Superconductor hybrid systems, proximity effects

Marco Aprili 1

CSNSM-CNRS Bât.108 Université Paris-Sud 91405 ORSAY and 'Pôle Supraconductivité'' ESPCI 10, rue Vauquelin 75005 Paris

Outline

- 1. Inhomogeneous superconductivity : gain & price of S/F nanostructures
- 2. Macroscopic and microscopic measurements
- 3. Josephson coupling in S/F/S (better S/F/I/S)
- 4. Macroscopic Quantum-Mechanics : π -SQUIDs and π -rings

Superconductivity

Below T_c the system condenses in a macroscopic number of Cooper pairs

q

D-wave p=0 l=2

The Fulde-Ferrell-Larkin-Ovchinnikov state

Fulde and Ferrell PR 135, A550 Larkin and Ovchinnikov Sov.Phys. JETP 20, 762

Never found, why?

Ferromagnet/Superconductor proximity effect

Question :

Where's the gain ?

Why S/F hybrid structures rather than bulk superconductors ?

Andreev Reflection

Superconducting Correlation Propagation

No condensate $\mathbf{j}(E,x) = Et/\hbar$ Phase coherence is lost when $\mathbf{j}(E,x) \sim 1 \longrightarrow 2 \sim \hbar v_F/E$

Coherent superposition of ψ_e and ψ_h

$$\Psi = \Psi_e + \Psi_h \propto \cos(E/E_{Th}) \qquad E \sim E_{ex}$$
$$E_{Th} = x/\hbar v_F$$

Answer

1. ξ_F does not depend on Δ . Superconducting correlations survive in F even if $E_{ex} >> \Delta$

Therefore S/F does not require comparable energy scales !!!

2. Only phase coherence is needed. No pairing equation in F.

Therefore oscillations even in the dirty limit !!!

But...Spin must be a good Quantum Number

The price to pay: Nanostructures !

 $\xi_{\rm F} = \hbar v_{\rm F} / E_{\rm ex}$ $E_{\rm ex} ~ 0.1 - 1 \ eV$ $\xi_{\rm F} ~ 0.5 - 5 \ nm$ $\xi_{\rm N} = \hbar v_{\rm F} / K_{\rm B} T$ $T ~ 1 \ K$ $\xi_{\rm N} ~ 1 \ \mu m$

Reduced to 0.1-1 nm in the dirty limit

- 1. Deposition of thin films by e-gun and magnetron sputtering (thickness control down to 0.1 nm)
- 2. Materials : Nb (high T_c and H_{c2} , small coherence length) Ferromagnetic materials and alloys : Gd, CuNi and PdNi

$$E_{ex} \sim 0.01 \text{ eV}$$
 $\xi_F \sim 10 \text{ nm}$
homogeneous thin films

Indirect exchange

 $m \sim 2.4 m_B$ per Ni $m_{Ni} = 0.6 m_B$

Itinerant ferromagnetism

Curie's Temperature

T_c oscillations : Calculations

FIG. 1. The reduced transition temperature T_c/T_{cS} as a function of the reduced (a) S film thickness d_S/ξ_S , and (b) M film thickness d_M/ξ_M for $\varepsilon = 10$ and $\Theta_D/T_{cS} = 200$. The tricritical points T^*/T_{cS} (thin curves) are also shown. Dashed curves show solutions that are physically unstable.

Radovic et al. PRB 44, 759 see also Buzdin et al. Sov. Phys. JETP 74, 124

T_c oscillations : measures

Jiang et al. PRL 74, 314 see also: Strunk et al. PRB 49, 4053 Aarts et al. PRB 44, 7745

The superconducting Density of States

Planar Tunnel Junctions

High energy and amplitude resolution

BCS Density of States

Tunneling Spectroscopy

 $Pd_{1-x}Ni_x \quad x \sim 10\% \quad T_c \sim 100 \quad K \quad E_{ex} \sim 10 \quad meV \quad \longrightarrow \quad \xi_F \sim 50 \text{ Å}$

Density of States at Zero Energy

Josephson Coupling

Microscopically

Current-phase relationship

Cooper pair transfert

I+

Josephson Coupling

Temperature dependence

 $I_c R_n \sim 5\mu V$

V. Ryazanov et al., PRL 86 2427 (2001)

Kontos et al. PRL 89, 137007 (2002)

Quantum Interference Devices

Resine mask

In collaboration with W. Guichard, O. Bourgeois & P. Gandit, CRTBT-Grenoble

Guichard et al. PRL 90, 167001 (2003)

Diffraction

Sponteneous Supercurrents

Groundstate = +/- $\Phi_0/2$

 $\pi \operatorname{ring} I_c L/\phi_0 >> 1$

Question :

Can superconductivity be used to change the magnetic order?

How nano-structures can help on that ?

Heterostructure

Idea : χ_{Pd} is reduced by induced superconductivity

1. Why proximity effect ?

We do not need similar energy scales as in bulk superconductors. $\Delta = 1 \text{ meV}$ $E_{ex} = 0.1 - 1 \text{ eV}$

2. Why dilute alloys ? $d > \xi_F = 2-20$ nm

