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Abstract 
 
The recent advances in micro fabrication techniques have stimulated interest in the study of 
properties of submicron sized magnetic elements. Promising applications including magnetic 
random access memory, high–density recording media and magnetic sensors require a better 
understanding of their magnetic behavior on a mesoscopic scale. Coupled to experimental 
studies, micromagnetic simulations become a powerful tool to predict and to analyze the 
magnetic behavior of such small elements. In this lecture we first present in section I the basic 
concepts used in micromagnetism and in their numerical implementation. After this general 
description we propose in section II to apply them to the study of two model systems: i)  self-
assembled epitaxial submicron Fe dots and ii) circular Co dots. 
 

I. Micromagnetism background 

 

Micromagnetic theory requires slow variations of the magnetization vector ( ) ( )rmrM sM=  
on a significant length scale which is large enough to approximate the direction angles of the 
atomic spins with a continuous function [1-4]. The spontaneous magnetic polarization sM  
denotes the mean magnetic moment per unit volume and is assumed to be constant, only the 
orientation of the magnetization vector ( )rm  may change. The aim of micromagnetism is to 
determine the vector field ( )rm  as a function of the position r and the applied field Hext 
corresponding to an equilibrium state of the ferromagnet. This can be obtained by minimizing 
the Gibbs free energy ( )( )rmF  with respect to the orientation ( )rm . In the continuous 
medium approximation, the Gibbs free energy of a ferromagnetic system is the sum of 
exchange interactions, magnetocrystalline energy, Zeeman contribution due to applied field 
and dipolar interactions. It can be written as : 
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within the limit of negligible magnetostatic and surface anisotropy effects. uK  is the direction 
of an uniaxial anisotropy and PK  is a polynomial describing the magnetocrystalline 
anisotropy energy. SH  denotes the stray field produced by the magnetostatic volume charges 

( )rm⋅∇−= sm Mρ  and surface charges ( ) nrm ⋅= sm Mσ , the notation ( )( )2rm∇  means 
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βα m  in cartesian coordinates. From (1) the effective field is defined as the 

functional derivative of the free energy with respect to ( )rm  and reads as 
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At the mesoscopic scale the main contributions to the Gibbs energy come from exchange and 
magnetocrystalline interactions, which may be expressed as local terms. The dipolar 
interactions remain the most difficult to be determined because the demagnetizing field at a 
given point depends on the moment distribution over the entire material. 
 
Stray field estimation by an integral method 
 
The approach presented here allows a better control of numerical artefacts to be obtained. The 
physical system is described as a set of regular elements in the finite differences 
approximation. The main advantage is that the fields and their derivatives are always defined 
at the interface of two contiguous elements. While complicated geometries cannot be dealt 
with, this lack of geometrical flexibility is not important compared with the benefit in 
accuracy and stability. 
The simplest way to calculate the stray field associated with a given magnetization 
distribution )(rm is to consider constant magnetization within each element. The stray field 
may be expressed as a convolution of the constant magnetic charges at the cell surfaces with 
an interaction function: 
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where G is the Green function, solution of the equation 
)()(2 rr δ−=∇ G . Ramstock et al [5] have shown that this 

approach may fail for small Q values where 
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the so-called quality factor. Discretization may also generate 
spurious magnetic charges which progressively disappear 
when the number of elements becomes large. However, this 
approach allows the discretization of the integral equation to 
be simply understood. Let us consider a 2D system with ax 
and ay being the grid spacings along the x and y directions. 
Each element centred at a node P generates a contribution to 
the stray field at the point M, 

yPxP aGPaGPM )()()()()( //// MPMPdH // ⊥⊥⊥ ∇−∇−= σσ                              (3) 

where //P  and ⊥P  are the mid points of the surfaces located below and to the left of point P as 
shown in Fig. 1. By summing over all points //P  and ⊥P , the complete calculation of the stray 
field is obtained. The direct summation of equation (2) is not efficient in computation time 
because the number of multiplications required is proportional to N2 where N is the number of 
elements. By noticing that all points P and M lying on a grid, the gradient of Green function 
preserves the translation symmetry. The stray field may then be estimated by using a FFT 
technique and the computing time becomes of the order N.log2N [5-7]. 
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Fig. 1: Discretization of a 2D 
magnetic system using constant 
magnetization blocks. 
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In our 3D simulations [8], the concept of blocks with constant magnetization is not 
appropriate since it is not capable of describing smooth spatial changes of magnetization. An 
improved form consists of estimating the magnetization vector at each node as a second order 
interpolation of the vector field between the cell and its nearest neighbors, thus allowing the 
volume charges to vary linearly. In order to reduce the memory requirement, any nonuniform 
charge distribution was averaged inside each element and on any free cell boundary. This 
approach does not perturb the magnetic charges equilibrium over the sample, since the 
constant volume charges and constant surface charges at the free borders are  averaged to 
zero. The accuracy of our approach reaches the precision of the model B, proposed by 
Ramstock et al.[5]. 
 
Calculations of the equilibrium state 
 
As a general rule, in static field calculations, magnetization configurations in the equilibrium 
state may be determined using iterative methods. These are based on the calculations of the 
variations of the free energy due to an infinitesimal rotation of the magnetization vector m . 
These approaches, such as the gradient conjugate method, are very efficient when the 
magnetic system is close to the equilibrium state [9]. Another way consists of mimicking the 
precession motion of magnetic moments submitted to a local field by integrating the dynamic 
Landau Lifshitz Gilbert equation (LLG hereafter) : 
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where γ  is the gyromagnetic factor and α  set to 1 is the Gilbert damping constant. H  
denotes the field derived from the functional variation of the free energy 

Hm •−= ∫ δµδ rdMF S
3

0 . The variation δF  may be written as the sum of a volume term and 

a surface term. The latter is due to the symmetry breaking of the exchange interactions at the 
surface. At equilibrium, the torque created by the effective field on the magnetization vector 
must vanish at every point of the physical system 0≡× Hm . As a result the surface term in 
the Fδ  expression gives the homogeneous Brown's condition 0m =∂ n  assuming no surface 
contribution from the anisotropy energy. 
 
The numerical methods developed to solve equation (4) are based on forward and partially 
backward finite difference schemes and were adjusted to maintain the magnetization 
amplitude constant. A set of techniques for such calculations has been reported by Nakatani et 
al [10]. 
 
II. Application to mesoscopic systems 
 
The confinement of magnetic domains in finite-size flat elements made of soft magnetic 
materials has been extensively addressed [11-13]. Up to recently, mostly samples of size 
above some microns had been studied, ignoring the internal structure of domain walls and 
vortices, that were treated as singularities in [10, 11]. Today the improved resolution of 
magnetic imaging [14, 15] and the increased power of computers allow experiments and 
micromagnetic simulations to overlap in the range 50 - 1000nm, while analytical models 
taking into account the internal structure of magnetic non-homogeneities are being developed 
[16-18].  
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Self-assembled epitaxial submicron Fe dots 
 
We first propose to examine magnetic configurations in epitaxial self-assembled ingot-shaped 
Fe dots which are fabricated and encapsulated under ultra-high vacuum using pulsed laser 
deposition [19]. These dots (Fig. 2a) display atomically-flat facets [19], bulk lattice parameter 
and magnetic anisotropy (< 100 > easy axes), and the inter-dot dipolar interactions are 
negligible. 
 
We present here some effects of shape and finite size on remanent magnetization states of 
such sub-micron size model magnetic dots [20]. We focus on dots approximately 

60300600 ×× nm3. Hysteresis loops were measured at 300K over assemblies of dots by 
Vibrating Sample Magnetometry. Magnetic force microscopy (MFM) was performed at 300K 
using a Nanoscope IIIA (Multimode) from Digital Instruments with a lift height of about 30 
nm and a Si tip coated with 40nm of vertically magnetized CoCr. Micromagnetic simulations 
were performed at 0K (no thermal noise) by integrating LLG equations using a custom-
developed finite differences code. The sample was divided into 128×64×16 parallelepipedic 
cells with lateral and vertical size ax = ay = 4.6875 nm and az = 3.75 nm, respectively. The 
magnetization vector at each node is estimated as a second order interpolation of the vector 
field between the cell and its nearest neighbors, thus allowing the volume charges to vary 
linearly. In the reported calculations the dot edges were taken as vertical to avoid discretizing 

artifacts on the side facets and to 
simplify the comparison with flat dots. 
The magnetic anisotropy was that of 
bulk Fe and the external field was 
applied 0.1° off high symmetry 
directions to avoid numerical artifacts. 
 
Hysteresis loops of assemblies of dots 
were found to display zero remanence 
in all directions [19]. Imaging at zero 
external field with MFM an assembly of 
dots, mostly two types of remanent  
states were observed (Fig. 2b). 
Simulated MFM contrast assuming a 
unipolar tip (Fig. 2c) allows us to 
identify the so-called Landau state (LS, 
left) and diamond state (DS, right). 
These two states are well known for flat 
dots well above the micron-size, and are 
explained by the Van den Berg (VdB) 
model [12].  
Surprisingly the locus of magnetic walls 
and vortices in the simulated states is 
very close to the predictions of VdB 
down to tiny details such as the slight 
vertical elongation of the two vortices in 
the DS (Fig. 2d). Indeed the VdB model 
relies on three hypotheses, none of 

which is fulfilled in our case: infinitely soft magnetic material, infinitely thin plate, infinitely 
large sample (the latter being equivalent to zero exchange). Paradoxically other micron-size 

 

Fig 2. (a) 3D AFM image of a 600 × 300 × 60nm Fe dot (true 
vertical scale). Below are shown, (b) experimental MFM 
images after saturation along [001], (c) simulated dH/dz maps 
over the dot with a lift height of 30 nm, and (d) simulated 
configurations superimposed here with the Van den Berg 
construction, for both Landau (left) and diamond (right) 
states. Note the bipolar contrast of Néel walls and the unipolar 
contrast of the Bloch wall in (b-c). In (d) the color reveals the 
perpendicular component of magnetization of the mid-height 
plane, while white arrows sketch the in-plane magnetization 
direction. 
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systems that fulfill all three criteria better than the present dots, such as thin micron-size 
plates of Permalloy, were shown to deviate from VdB predictions [21]. We explain this 
apparent contradiction the following way. Firstly dipolar energy increases with the dot’s 
height, so that both dipolar and anisotropy energies compress domain walls, reducing 
characteristic length scales (and removing domain wall tails) to a scale smaller than the dot’s 
lateral size. Secondly, as in our case dipolar energy dominates over anisotropy energy, the 
locus of the walls and vortices is determined mainly by dipolar energy, and therefore 
coincides with VdB predictions. 
 
Circular Co dots 
 
For submicron soft magnetic elements the shape and the size are key factors controlling the 
magnetic states [22, 23]. This feature is obvious when the hexagonal geometry is replaced 
with the circular geometry [24]. For the case of cobalt dots with circular shape and size down 
to 200 nm in diameter, at least two kinds of zero-field magnetic states have been evidenced by 
MFM studies (Fig. 3a and b) [25, 26]. After in-plane saturation of the square array of circular 
dots, most of the dots exhibit a strong dipolar black-white contrast associated with a in-plane 
single domain state. The magnetization lies in the plane of the dot, having as average 
orientation the initial saturation direction. However near the border, the magnetization still 
tries to be parallel with the surface in order to avoid the surface magnetic charges as the 

micromagnetic calculation indicates (Fig.3d). Instead, 
starting from the out-of-plane saturation a flux closure 
magnetization configuration is stabilized preserving 
the circular geometry of the dot. The strong MFM 
contrast observed just in the central part of the dot 
confirms that the magnetization is confined to lie in 
the film plane following a circular magnetization 
path. Only in the central region of the dot, for 
topological reasons, the magnetization is forced to 
exit from the plane of the dot becoming perfectly 
perpendicular forming thus a vortex core. As figures 
3b and 3c show, a good agreement exists between the 
experimentally recorded MFM pictures and the 
simulated ones. 
 
For circular flat elements, in the absence of any 
magnetic crystal anisotropy, the only two energy 
contributions are: the demagnetizing field energy 
dominating in the single-domain state and the 
exchange energy dominating in the flux closure state. 
The competition between these energies is related to 
the size of the dot. Due to the out-of-plane orientation 
of the vortex core, there is a dipolar field contribution 
besides the exchange energy in the flux closure state. 
Both energy terms act only locally, over the diameter 
of the vortex core and the total energy of the flux 

closure is thus stored almost inside this region. For constant thickness, if the diameter is large 
enough to allow a vortex inside, increasing the lateral size doesn’t affect the internal vortex 
structure. Hence, for wide dots the flux closure state is energetically more favorable that the 
single domain state and corresponds to the ground state of the system. If the diameter of the 

 

Fig. 3: (a) AFM topography of a square array 
of circular Co dots  15nm thick with a 
diameter of 200nm . (b) Experimental MFM 
images after in-plane respectively out-of-
plane saturation. (c) Simulated MFM images 
for isolated dot having a single domain state 
(left side) and a flux closure state (right side) 
yielded by the micromagnetic configurations 
drawn in (d). 
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dot decreases below a certain critical value (for Co this critical size is around 60 nm which is 
about twice the vortex diameter) the flux closure state is too energetic and the single domain 
state switches to the ground state. One way to increase the stability of the flux closure state 
with respect to the single domain state down to lower diameter values is to remove the central 
part of the dot, leading to a ring structure. The vortex core is physically suppressed and the 
total energy density is considerably reduced. 
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