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Outline – first part 5.4
• Magnetic data storage – energy considerations

• What are the data storage requirements?
• What are the available magnetic data storage options?
• Team exercise – looking at energy efficiency
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Hierarchy in data storage

• The world of data storage is increasingly diverse as different 
optimisations point to different solutions

• Driving factors:
• Cost
• Cost
• Cost

• Other driving factors
• Malware (ransomware)
• Business continuity 
• Regulatory compliance
• Energy consumption

3
Millar PhD thesis (UC Berkeley) 1995



Data storage use cases

• Increased 
complexity

• Energy needs to 
be considered at 
system level

• Our research is 
focused on best 
performing 
devices
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A modern data center – San Jose, CA
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• What is the 
noticeable 
thing?



A modern data center – San Jose, CA
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• Air 
conditioning 
units

• Global data 
centre
electricity 
use in 2020 
was 200-250 
TWh, or 
around 1% of 
global final 
electricity 
demand



Magnetic data storage

• Think of data storage as a single bit state 
machine – what are the energy considerations:
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• Energy to maintain a state
• Energy to change a state (i.e. 0 -> 1)
• Energy consumption of the system (Local & 

Global)
• Total energy cost of building the device in 

the first place
• What has been happening to data 

storage energy use?
1
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Magnetic – HDD: the current workhorse

• HDD - Simple scaling
• Power consumption per 

device remains constant
• But increase in areal density 

slowed to a trickle

• Now adding more disks  
from 2/3  ->  9/10

• A $20b+ industry
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HDD – power consumption

• Electronics accounts for a surprising 
fraction of the power consumption

• Fine detail of control systems matter 
for energy consumption
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Magnetic data storage basics
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Longitudinal Magnetic Recording – Past (1956-2006)

13

Disk
Ultra smooth surface
Thin magnetic coating
Protective overcoat
Surface lubricant

 Inductive Write Element
Soft magnetic poles
Copper write coil
Alternate coil current to 

write magnetic transitions
Resistive Read Element

• GMR sensor to detect 
magnetic transitions

 Disk rotates under a slider that has an integrated read/write head at its trailing end
 Very close slider-to-disk surface proximity critical for high resolution recording
 Information is stored in magnetic transitions written onto the disk’s thin magnetic coating
 The magnetization is in the plane of the disk surface



Perpendicular Magnetic Recording - Current
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 Disk
• Ultra smooth surface
• Thicker magnetic coating
• Protective overcoat
• Surface lubricant

 Inductive Write Element
• Modified design
• Soft magnetic poles
• Copper coil
• Alternate coil current to write 

magnetic transitions
 Resistive Read Element

• TMR to detect magnetic 
transitions

 Disk rotates under a slider that has an integrated read/write head at its trailing end
 Very close slider-to-disk surface proximity critical for high resolution recording
 Information is stored in magnetic transitions written onto the disk’s thin magnetic coating
 The magnetization is perpendicular to the disk surface

Disk

Resistive Read Element






HDD enhancements – extending areal density

• Areal density is around 1 TB/in2 (Wood)
• Adaptive fly height
• Helium filled
• Shingled writing
• Signal processing

15Wood et al. “Recording Technologies for Terabit per Square Inch Systems” IEEE Trans Magn. 38 1711 (2002)



Energy assisted recording
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GMR laser 

write coils

heat spot

TMR

HAMR MAMR

Shiroishi et al. IEEE Trans Magn. 48 3816 (2009)
Video

HAMR: Heat assisted magnetic recording
MAMR: Microwave assisted magnetic recording

https://youtu.be/nRhPYzgpet4


Magnetic - tape

• Poor relation – but still a useful part of the data storage infrastructure
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• Physical separation of media and 
device

• Almost exclusively Linear Tape Open 
(LTO) technology

• “Tape has a significantly lower 
environmental impact as there is no 
need to have it constantly powered-on 
during data storage, thereby reducing 
CO2 emissions generated during its 
lifecycle by 95% compared to hard disk 
drives (HDDs)” - FujiFilm Recording 
Media USA.

• A $5b industry



Magnetic - Roadmaps
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TT leaves the industry…



Magnetic - MRAM

• Three types of MRAM
• Toggle switch MRAM

• Some specialist applications 

• Spin Transfer Torque (STT-)MRAM
• In production, mostly for embedded 

systems
• 2 terminal device

• Spin Orbit Torque (SOT-)MRAM
• Advanced research / pilot line
• 3 terminal device

• Small $$$ (so far…)
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IBM Almaden

STT-MRAM SOT-MRAM

Jabeur et al. (Spintec) ELELIJ 6,  1 (2017).



NAND Flash – SSD/PCIe/NVMe
• Electronics overhead as least 

as much as for HDD
• Read operation approximately 

constant with bits/cell
• Write operation – depends on 

bits/cell (longer program 
times required)

• A number of energy modeling 
tools are now available [1]

• A $70b industry
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Developing new low-energy data storage

21

Physical fact Energy efficient device/system



Developing new low-energy data storage

22

Movement of spin does not induce 
Joule heating

Magnonics/Skyrmions/MRAM/Optical 
switching



Developing new low-energy data storage
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Movement of spin does not induce 
Joule heating

Magnonics/Skyrmions/MRAM/Optical 
switching

Research



Where are we today? – Writing energy

• Optically switchable magnetic tunnel 
junction (MTJ) memory device (68) 

• Electrically switchable spin valves 
using mechanisms of spin- transfer 
torque (50–55 triangles)

• Spin–orbit torque (56–61 squares) 
and electric- field-induced switching 
(62–64 circles) is shown

• The red line show the eqn with the 
characteristic timescale of switching 
dynamics tc0 = 1 ns and the static 
switching energy Uc0 = 10 fJ

• The shaded area indicates the target 
specifications by future technologies

24
Kimel & Li Nature Review Materials 4 189 (2019)

target specifications for 
future technologies

𝑈𝑈 𝜏𝜏 = 𝐼𝐼2𝑆𝑆𝜏𝜏 = 𝑈𝑈𝑐𝑐0 2 +
𝜏𝜏
𝑡𝑡𝑐𝑐0

+
𝑡𝑡
𝜏𝜏𝑐𝑐0



Team exercise

• Time 30 mins
• Team 1/5/9 – Race-tracks/domain walls -> Skyrmions
• Team 2/6 – SOT MRAM
• Team 3/7 – Magnonics
• Team 4/8 – All optical switching

• Research questions
• Is there an implementation scheme for your data storage/computation?
• How are estimates for energy consumption obtained? - what counts is energy at the 

wall plug
• Could it be manufacturable?
• Is the target area the correct size/shape?

25



Teams

1) Project-Computation: Reducing energy of computation (mixed)
2) Project-Internet: Reducing the power consumption of the internet
3) Project-cars: “Sustainable Magnetic Materials for Future Electric 

Application”
4) Project-fridge: magneto-calorics
5) Project-Skyrmion
6) Project-Altermagnets
7) Project-energy: Multiferroics
8) Project-water
9) Project-solarwind

26



Team time
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A big thank you to Prof. Steve 
Furber for the background 

information on silicon systems



Manchester Baby
• First stored program 

computer (1948)

• Recognised as an IEEE 
Milestone (2022)

29

Feature size 10 x 106 nm



SpiNNaker CPU (2011) – Neuromorphoic
computing

30

• Billions of 
transistors on a 
single chip

• Research 
wafers with 2 
nm min feature 
size – IBM 2021



Seven decades of progress

• Baby:
– filled a medium-sized room
– used 3.5 kW of electrical power
– executed 700 instructions per second

• SpiNNaker ARM968 CPU node:
– fills ~3.5mm2 of silicon (130nm)
– uses 40 mW of electrical power
– executes 200,000,000 instructions

per second

31



Energy efficiency

• Baby:
• 5 Joules per instruction

• SpiNNaker ARM968:
• 0.000 000 000 2 Joules per instruction

25,000,000,000 times better than Baby!

32

(James Prescott Joule 
born Salford, 1818)



Multi-core CPUs

• High-end uniprocessors
• diminishing returns from complexity
• wire vs transistor delays

• Multi-core processors
• cut-and-paste
• simple way to deliver more MIPS

• Moore’s Law
• more transistors
• more cores

33

• General-purpose parallelization
• an unsolved problem
• the ‘Holy Grail’ of computer science for half 

a century?
• but imperative in the many-core world

• Once solved…
• few complex cores, or many simple cores?
• simple cores win hands-down on power-

efficiency!



Back to the future

• Imagine…
• a limitless supply of (free) processors
• load-balancing is irrelevant
• all that matters is:

• the energy used to perform a computation
• formulating the problem to avoid synchronisation
• abandoning determinism

• How might such systems work?

34



Neuromorphic computing - SpiNNaker project

• Multi-core CPU node
• 18 ARM9 processors
• to model large-scale systems of 

spiking neurons

• Scalable up to systems with 10,000s 
of nodes

• over a million processor
• 50-100kW

35



Technology Scaling

36

• 90nm SpiNNaker CPU node



The Exascale objective

• 1018 FLOPS at 10MW
• 100,000 MFLOPS/W
• 30x current state-of-the-art

• Key ideas:
• use process advances for efficiency, not speed
• simplify processors, localize memory
• 3D integration

• single package many-core node

• Energy is the real cost of computing!

37

Multi-chip 
packaging 
by UNISEM 

Europe

FLOPS = floating-point operations per second
Exa = 1018



Power consumption – Si circuits

• CMOS power consumption
• voltage change on a gate capacitance requires charge transfer, and therefore 

power consumption
• once a gate is charged it can maintain its level without any additional charge 

movement

• CMOS circuitry only consumes power when switching states
• well, until leakage starts to bite!

38



Power consumption

where:
P = dynamic power consumption
Ctotal = total node capacitance 
fclock = switching frequency of device clock
VDD = supply voltage
α = activity: mean no. transitions/clock cycle

e.g. for clock tree α = 2

39

∆P = 1
2

× 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑓𝑓𝑐𝑐𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐 × 𝑉𝑉𝐷𝐷𝐷𝐷2 × 𝛼𝛼



Power consumption
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∆P = 1
2

× 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑓𝑓𝑐𝑐𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐 × 𝑉𝑉𝐷𝐷𝐷𝐷2 × 𝛼𝛼

• Reduce VDD?

Td = circuit delay
Vt = threshold voltage

• Use parallelism to offset increases in circuit delay

𝑡𝑡𝑑𝑑 ∝
𝑉𝑉𝐷𝐷𝐷𝐷

𝑉𝑉𝐷𝐷𝐷𝐷−𝑉𝑉𝑡𝑡 2



Power consumption
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∆P = 1
2

× 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑓𝑓𝑐𝑐𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐 × 𝑉𝑉𝐷𝐷𝐷𝐷2 × 𝛼𝛼

• Reduce fclock?
• time to complete computation ~ 1/f
• power ~ f
• so energy per operation independent of f
• reduced f only helps if it allows lower VDD



Power consumption
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∆P = 1
2

× 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑓𝑓𝑐𝑐𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐 × 𝑉𝑉𝐷𝐷𝐷𝐷2 × 𝛼𝛼

• Reduce Ctotal?
• use smaller, simpler circuits

• e.g. ARM core rather than Pentium

• don’t over-size gates and buffers
• in particular, reduce drive off critical path

• use on-chip rather than off-chip memories
• off-chip capacitances >> on-chip



Power consumption
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∆P = 1
2

× 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑓𝑓𝑐𝑐𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐 × 𝑉𝑉𝐷𝐷𝐷𝐷2 × 𝛼𝛼

• Reduce α?
• don’t switch more than is necessary

• gate clocks
• turn off processor when job-list is empty

• don’t sit in an idle loop!
• ‘event-driven’ style of design

• in the limit, use asynchronous design



Power consumption - leakage
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• Transistor off current isn’t zero!

• Vt is the transistor threshold
• When VDD = 5 V,      Vt = 0.7 V,        Ioff ~ pA

• x 1,000,000 transistors = 1 µA

• In deep submicron CMOS VDD is lower
• e.g. 130 nm, Vdd = 1.2 V, Vt = 0.3 V, Ioff ~ 10 nA
• x 100,000,000 transistors = 1 A

• This is a big problem!  - is there an alternative approach (Maybe…)

𝐼𝐼𝑡𝑡𝑜𝑜𝑜𝑜 ∝ 10 − �𝑉𝑉𝑡𝑡 100𝑚𝑚𝑉𝑉



Magnetics in computing

• Move up the hierarchy – think function rather than individual  
transistors or logic gates.

• Some analogies with quantum computing where you do an 
experiment and get an answer.

• Skyrmions – neuromorphic computing – some work in Manchester
• Spin torque oscillators (STO) 
• Magnonic devices

45



Brain-inspired computing

46

Spiking Neural NetworksTailored hardware

(some) building blocks:
neurons & synapses

Co-design

Christoforos Moutafis



Highlight: Skyrmionic MML Nanosynapse
for Deep Spiking Neural Networks

47[1] R. Chen, C. Li, Yu Li, J. J. Miles, G. Indiveri, S. Furber, V. F. Pavlidis, C. Moutafis, Phys. Rev. Applied 14, 014096 (2020) 

• Can we emulate Synaptic 
behaviour with topological 
quasi-particles in 
nanomagnets in realistic 
conditions?

• Plasticity
• Non-volatility

• Embedded in an SNN and 
Deep SNN framework to 
achieve superior classification 
accuracy in the MNIST 
handwritten data

• Skyrmionic synapse can be a 
potential candidate for future 
energy-efficient neuromorphic 
edge computing

Number of skyrmions +/-
Conductance +/-
Synaptic weight +/-

Program via current pulses
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Programming current pulses

DepressionPotentiation



Highlight: Topological Filtering for Next-
Generation Non-Volatile Interconnects

• Missing component? A skyrmionic
interconnect device that exploits 
topological selectivity to achieve signal 
multiplexing

• Nucleation electrically within 500 ps
(following [1])

• Paradigm shift, multiple skyrmionic
textures / quasi-particles for multiple 
information carriers

• Exploring stability / metastability of 
topological and non-topological quasi-
particles important for future work

• The topological properties of skyrmionic
quasiparticles such as magnetic 
skyrmions and skyrmioniums enable 
their applications in future low-power, 
ultradense nanocomputing and 
neuromorphic systems

48
[1] B. Göbel, A. F. Schäffer, J. Berakdar, I. Mertig & S. S. P. Parkin, 
Electrical writing, deleting, reading, and moving of magnetic skyrmioniums in a racetrack device, Sci. Rep. 9, 12119 (2019)
[2] R. Chen, Y. Li, V. F. Pavlidis, C. Moutafis, Skyrmionic interconnect device, Physical Review Research 2, 043312 (2020) 



Skyrmions for Nanocomputing
• Neuromorphic Computing: Explore 

concepts for pattern extraction / 
classification tasks, e.g. nanoscale 
multilayer skyrmion-based synapses for 
deep spiking neural networks [1]

49

[1] R. Chen, C. Li, Y. Li, J. J. Miles, G. Indiveri, S. Furber, V. F. Pavlidis, C. Moutafis,
Nanoscale RT Multilayer Skyrmionic Synapse for Deep Spiking Neural Networks, 
Physical Review Applied 14, 014096 (2020) 
[2] R. Chen, Y. Li, V. F. Pavlidis, C. Moutafis, 
Skyrmionic interconnect device, 
Physical Review Research 2, 043312 (2020) 

• Interconnects: Encoding sequences of 
information with distinct skyrmionic
textures for multiplexing/demultiplexing 
signals [2].

• Multiple topological (& non-topological) 
spin textures as information carriers

• Many challenges both at the device (e.g. 
which device design?) and system level 
(e.g. scalability)



Neuromorphoric computing with STOs
• Neuromorphic computing with spin torque 

nano-oscillators (STOs). 
• A fixed input current gives an oscillating 

voltage across the junction.

• Reservoir computing with STO using time 
multiplexing in pre- and post-processing, 
here recognizing the particular spoken digit 
as ‘1’.

• Top: schematic of the use of coupled nano-
oscillators for vowel recognition. 

• Bottom: the input is represented by the 
frequencies of two microwaves applied 
through a stripline to the oscillators. The 
natural frequencies of the oscillators are 
tuned by d.c. bias currents.

• These can be tuned so that the 
synchronization pattern between the 
oscillators corresponds to the desired 
output.

50Grollier et al. Nature Electronics 3 360 (2020) 



Magnonics - Spin wave computing

• Magnonics addresses the physical 
properties of spin waves and 
utilizes them for data processing

• Scalability down to atomic 
dimensions, operation in the GHz-to-
THz frequency range 

• Magnonics is definitely in the 
research phase but some proof-of-
concept prototypes have been 
developed

• Computation operations with the 
Boolean digital logic and 
unconventional approaches, such 
as neuromorphic computing.

51
Chumak et al. IEEE Trans Magn. 58 0800172 (2022) 



Magnonics – computational functionality

• The operational principle of the 
magnonic half-adder 

• Schematic view of the magnonic
half-adder

• Typical parameters: 
• YIG waveguide width, w = 100 nm; 
• thickness, h = 30 nm;
• edge-to-edge distances between 

waveguides, d1 = 450 nm, d2 = 210 
nm;

• angle between waveguides, φ = 
20°; 

• gaps between coupled waveguides, 
δ1 = 50 nm, δ2 = 10 nm;

• lengths of coupled waveguides, L1 
= 370 nm and L2 = 3 μm. 

• Red and black arrows show the 
flow path of magnons from the 
inputs to the logic gates.

52
Wang et al. Nature Electronics 3 765 (2020) 



Summary

• Magnetic data storage and computation from an energy perspective
• Need to think about total energy budget of system as well as that of 

devices
• Magnetic devices offer new paradigms in computation but a long way 

to go
• Several schemes for neuromorphic devices
• Spin waves have promise
• Synergies with quantum computing?

53



October 2020
W. Griggs

• The whole NEST team

• The Funding agencies

• Our collaborators everywhere:

Thanks & Acknowledgements

54

We are pleased to acknowledge our funders: EPSRC 
(EP/V007211/1, EP/S033688/1, EP/V028189/1, 
EP/L01548X/1, EP/S019367/1, EP/P025021/1)



Questions
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Team presentations
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