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• The magnetism of materials can be derived from the magnetic properties
of atoms.

• The atoms as the quantum objects subject to the laws of quantum
mechanics.

• =⇒ The magnetism of materials possesses the quantum nature.

• In my lecture, I will give a brief introduction to the basic quantum
mechanics and its application to a description of the magnetism of atoms.
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The observable part of the Universe (light matter) consists of mas-
sive particles and mass-less radiation.

Both particles and radiation possess the quantum nature.
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Experimental background of quantum physics

• distribution of black-body radiation (Planck's law, 1900)

• photoelectric e�ect

• discrete emission and absorption spectra of atoms

• existence of spin (Stern- Gerlach experiment and spin Zeeman e�ect)

• . . .

• nanoelectronic/spintronic devices

• quantum computer
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1 Quantum states, wave functions, eigenvalue equa-
tions

Quantum states of quantum objects (electrons, protons, atoms, molecules) are
described by the state vectors being the elements of the abstract Hilbert space
H.

State vectors in Dirac (bracket) notation:
ket vectors

|ϕ〉, |ψ〉, |χ〉, . . .

bra vectors
〈ϕ|, 〈ψ|, 〈χ|, . . .

Scalar product

〈ϕ|ψ〉 = c

c = complex number
How can we connect the abstract state vectors with the quantum

phenomena that take place in the real/laboratory space?
In order to answer this question we introduce the state vector |r〉 that de-

scribes the state of the single particle in the well-de�ned position r = (x, y, z)
and calculate the scalar product

〈r|ψ〉 def= ψ(r) . (1)

=⇒ Eq. (1) de�nes the wave function of the particle.

Physical interpretation of wave function

The wave function determines the probability density of �nding the particle
in quantum state |ψ〉 in position r

%(r) = |ψ(r)|2 . (2)

Probability of �nding a particle in space region ∆τ in state |ψ〉

P∆τ =

∫
∆τ

d3r|ψ(r)|2 (3)

Normalization of wave function∫
∞
d3r|ψ(r)|2 = 1 . (4)

In Eq. (4), the integration runs over the entire space.
In quantum theory, we associate the operators Ω̂ to classical dynamic quan-

tities Ω by the quantization procedure.

6



For example,
linear momentum p −→ p̂ = −i~∇
angular momentum l −→ l̂ = r̂× p̂
energy (Hamilton function) H(r,p) −→ Ĥ(r̂, p̂)
Ĥ = operator of energy = Hamiltonian
~ = h/(2π)
h = Planck constant = 6.626× 10−34Js

Eigenvalue equation

The eigenvalue equation
Ω̂|ν〉 = ων |ν〉 (5)

is satis�ed for operator Ω̂ of measurable quantity Ω if the quantum system is in
state |ν〉.

In Eq. (5), ων is the eigenvalue (real number) that is the exact result of
the measurement of quantity Ω for the quantum system in its eigenstate |ν〉.

The quantum states are speci�ed by the quantum numbers ν.

E.g., for the electron in atom

ν = (n, l,m, s) ,

(n, l,m) = orbital quantum numbers
s = spin quantum number
for the electron in a crystalline solid

ν = (kx, ky, kz, s) ,

(kx, ky, kz) = k = wave vector.
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Figure 1: Classical orbital (angular) momentum l = r× p.

1.1 Orbital momentum

Quantum operator of angular momentum has the vector form

l̂ = (l̂x, l̂y, l̂z) (6)

Eigenvalue equation for the z component of the angular momentum

Operator of the z component of the angular momentum in spherical coordi-
nates

l̂z = −i~ ∂

∂ϕ

Eigenequation for l̂z

−i~dΦ(ϕ)

dϕ
= λΦ(ϕ) (7)

Solutions of Eq. (7)

Φ(ϕ) =
1√
2π
eimϕ

Eigenvalues of the z component of the angular momentum

λ = m~

m = 0,±1,±2, . . .± l ≡ −l, . . . ,−1, 0,+1, . . . ,+l

m = magnetic quantum number
For given l the magnetic quantum number m takes on 2l + 1 values.
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Figure 2: Spherical coordinates.

Eigenvalues of the square of orbital momentum

l2 = l(l + 1)~2

l = azimuthal (orbital) quantum number
For the electron in atom, l = 0, 1, . . . n− 1,
where n is the principal quantum number
that determines the electronic shell in atom.

n = 1, 2, 3, . . . ≡ K,L,M, . . .

Spatial quantization of angular momentum

For the electron in atom we can simultaneously measure the eigenvalues of
square of orbital momentum l̂2 and one of its components, e.g., l̂z.

As results of these measurements we obtain

l2 = l(l + 1)~2

and
lz = m~

These results can be illustrated by the vector model.
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Figure 3: Vector model for l = 2.

Figure 4: The �rst experimental observation of spin: Stern-Gerlach experiment.

1.2 Spin

Spin is a purely quantum variable that describes the inner properties of the
electron (proton, neutron) (not connected with any rotation).

There is no classical quantity that corresponds to spin,
although spin shows some formal similarity to the orbital momentum.
For electron, proton, neutron, the z component of the electron spin takes

only two values
sz = s~ = ±~/2 .

s = ±1/2 = spin quantum number
The square of spin

s2 = s(s+ 1)~2 (8)
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Figure 5: Results of the Stern-Gerlach experiment observed for: (a) atomic
beam without the magnetic �eld, (b) classical magnetic moment, (c) atomic
beam in nonhomogeneous magnetic �eld.

Figure 6: Magnetic orbital moment µl of particle with electric charge q and
mass m rotating on the orbit with radius r.

1.3 Magnetic moments

Orbital magnetic moment of the electron

µl = γll , (9)

γl = orbital giromagnetic factor

For electron in atom
γl =

qe
2me

= − e

2me
(10)

charge of electron = qe = −e < 0, e = elementary charge
Spin magnetic moment of the electron

µs = −gµBs . (11)

µB = e~/(2me0) = Bohr magneton g = Lande factor
In vacuum, g = 2 +O(10−3),
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in semiconductors, g can be negative (g = −0.44 in GaAs)
and can be very large (g ∼ 500 in GaMnAs).
In a general case, the electron possesses the total angular momentum

J = l + s .

Then, the total magnetic moment µJ of the electron with J is given by

µJ = µl + µs (12)

Interaction energy of the magnetic moment µJ with the external
magnetic �eld

∆UJ = −µJ ·B . (13)
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Figure 7: Splitting of energy level with l = 1 in external magnetic �eld B.

Figure 8: Normal Zeeman e�ect: transitions s→ p.

Normal Zeeman e�ect

For J = l: interaction energy of orbital magnetic moment µl with magnetic
�eld B = (0, 0, B)

∆Ul = −µl,zB
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Figure 9: Spin Zeeman e�ect: spin splitting of energy level EN in external
magnetic �eld B.

Spin Zeeman e�ect

For J = s: interaction energy of the electron with spin s with the magnetic �eld
B = (0, 0, B)

∆Us = ±|µs,z|B
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1.4 Spin-orbit coupling

Classical electrodynamics†

If the electron with charge qe = −e, spin s and rest mass me0 moves with
linear momentum p in external magnetic (B) and electric (F) �elds (measured
in the laboratory frame), then � in the electron frame � the following additional
magnetic �eld acts on the electron:

BSO = − 1

2me0c2
p× F . (14)

Eq. (14) results from the Lorentz transformation of the electric and magnetic
�elds.

Magnetic �eld BSO describes the spin-orbit (SO) interaction.

†The same result can be obtained in the framework of quantum electrodynamics.

Btotal = B + BSO (15)

Interaction energy of the electron spin with the total magnetic �eld

Espin = −µs ·Btotal = EZ + ESO , (16)

EZ = energy of spin Zeeman interaction,

EZ = −µs ·B , (17)

ESO = energy of spin-orbit interaction

ESO =
1

2me0c2
µs · (F× p) . (18)

If the electric �eld is central, i.e., F(r) = Fr(r)(r/r), then Eq. (18) trans-
forms into

ESO = − e~Fr
2m2

e0c
2r

s · l , (19)

s = electron spin l = r× p = orbital angular momentum

=⇒ ESO in form (19) explains the name: spin-orbit interaction.
Energy of spin-orbit interaction in atoms

ESO = αs · l

α = spin-orbit coupling constant

15



Hydrogen atom consists of positively
charged proton p+ and negatively charged electron e−.

2 Atoms

2.1 Hydrogen atom

Potential energy of proton-electron Coulomb attraction

UC(r) = −κe2

r
(20)

e = elementary charge
The coupling constant

κ =
1

4πε0
= 8.988× 109 Jm

C2
. (21)

The Schr®dinger equation for hydrogen atom(
− ~2

2m0
∇2 − κe2

r

)
ψν(r) = Eνψν(r) , (22)

m0 = rest mass of the electron

Solutions of the Schr®dinger equation for the hydrogen atom

Wave function of the ground state

ψ1s(r) =
1√
πa3

B

e−r/aB (23)

ν = (n, l,m) = (1, 0, 0) ≡ 1s

Bohr radius = aB = ~2

κm0e2

aB = 0.529 Å = atomic unit of length
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Figure 10: Energy levels of the bound states of the hydrogen atom.

Energy eigenvalues (for bound states)

En = −Ry
n2

. (24)

Ry =
κ2m0e

4

2~2
= 13.6058 eV

Ry = Rydberg constant

The energy of electron quantum states in hydrogen atom is independent of
the (l,m, s) quantum numbers, which means that these states are degenerate.
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2.2 Many-electron atoms

Spectroscopic notation

l 0 1 2 3 4 5 6 . . .
symbol s p d f g h i . . .

Arbitrary atom consists of the nucleus with Z protons (the nuclear charge
Qj = +Ze) and Z electrons with charge Qel = −Ze.

In one-electron approximation, we treat each electron as a particle being
independent of other electrons that moves in an e�ective central �eld generated
by the nucleus and other electrons.

Potential energy of the electron

Ueff (r) 6= UC(r) . (25)

The one-electron states in the many-electron atom are determined by quan-
tum numbers (n, l,m, s).

Quantum numbers (n, l,m) de�ne the (space) orbital.
The state with given (n, l,m, s) is called the spinorbital.
The energy levels of electrons in many-electron atoms

E = Enlm

in general depend on the quantum numbers (n, l,m), which means that the
degeneracy typical to hydrogen atom is lifted.
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2.3 Pauli exclusion principle, Hund's rules, periodic table

The electrons possess the fundamental quantum property:
Pauli exclusion principle.
For electrons in many-electron atoms this principle is formulated as follows:
The quantum state |n, l,m, s〉 can be occupied by at most one elec-

tron.
The Pauli principle for the orbitals:
the given space orbital |n, l,m〉 can be occupied by at most two electrons

with di�erent spins sz = ±~/2.
The construction of the periodic table of elements is based on the Pauli

exclusion principle.
The maximal numbersNl of electrons that can occupy the one-electron states

for the successive values of angular quantum number l
=⇒ occupation numbers of atomic subshells

l Nl = 2(2l + 1)
0 2
1 6
2 10
3 14
4 18
. . . . . .

The maximal numbers Nn of electrons that can occupy the one-electron
shells for the successive values of principal quantum number n

=⇒ occupation numbers of atomic shells

n Nn = 2n2

1 2
2 8
3 18
4 32
. . . . . .

According to the spectroscopic notation we denote the states with di�erent
values of the total orbital momentum L as follows:

L = 0 1 2 3 4 5 . . .
symbol S P D F G H . . .

For a description of electron states in many-electron atoms we introduce:

Multiplicity = 2S + 1
S = total spin quantum number (S = 0, 1/2, 1, 3/2, . . .)

Total angular momentum of N electrons in the atom

J = L+ S (26)

J = 0, 1/2, 1, 3/2, . . .
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Atomic terms

Atomic term is de�ned by the quantum numbers (L, S, J) that determine
the ground-state energy of atom.

Notation for atomic terms:

(electron configuration)
(2S+1)

LJ

where for L we use the letters S, P,D, . . ..
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Hund's rules

The Hund's rules determine the ground state of the atom, i.e., the state with
the lowest energy.

Hund's rules: general formulation
If the one-electron orbital is degenerate (or is almost degenerate), the ground

state corresponds to the orbitals with the same orientation of spins.
In other words, for the given electron con�guration the ground state pos-

sesses the maximal multiplicity (2S + 1).

Hund's rules: detailed formulation

For a given electronic con�guration determined by quantum num-
bers (L, S):

(1) the ground state possesses the maximal possible multiplicity (2S + 1),

(2) if there exist several states with the same maximal multiplicity, the ground
state possesses the maximal value of total orbital quantum number L,

(3) if the open subshell is �lled by the number of electrons less than (1/2) of
the maximal subshell occupation number, the ground state possesses the
total momentum quantum number J = |L− S|.

Electronic structure of atoms of elements for the two �rst periods in
the periodic table

Z symbol electron con�guration atomic term ionization energy
[eV]

1 H 1s 2S1/2 13.6
2 He (1s)2 1S0 24.6
3 Li (1s)22s1 2S1/2 5.4
4 Be (1s)22s2 1S0 9.3
5 B (1s)22s22p1 2P1/2 8.3
6 C (1s)22s22p2 3P0 11.3
7 N (1s)22s22p3 4S3/2 14.5
8 O (1s)22s22p4 3P2 13.6
9 F (1s)22s22p5 2P3/2 17.4
10 Ne (1s)2(2s22p6) 1S0 21.6

Con�gurations of outer electron subshells for iron subgroup

21Sc 22Ti 23V 24Cr 25Mn 26Fe 27Co 28Ni
3d4s2 3d24s2 3d34s2 3d54s 3d54s2 3d64s2 3d74s2 3d84s2

2D3/2
3F2

4F3/2
7S3

6S5/2
5D4

4F9/2
3F4

Inner shell electron con�guration = electron shell of 18Ar.
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3 Exchange interaction

Exchange interaction for two electrons localized on two di�erent
atoms

We consider two electrons localized on two identical atoms in positions Ra

and Rb. We assume that the electrons occupy the same one-electron orbital
(n, l,m) localized on each atom a and b.

The electrons can possess either parallel or antiparallel spins.
For parallel spins the two-spin state is the triplet state

| ↑↑〉 ≡ χT
for antiparallel spins the two-spin state is the singlet state

| ↑↓〉 ≡ χS

The total two-electron wave function has to be antisymmetric with respect
to the interchange of electron coordinates (we interchange both the spatial and
spin variables).

Ψ(ζ1, ζ2) = −Ψ(ζ2, ζ1) , (27)

where ζ = (x, y, z, σ) = (r, σ), σ = spin coordinate
For Ψtotal = ψspaceχspin the antisymmetry (68) leads to one of the proper-

ties: either
Ψtotal = ψspace,antisymχT (28)

or
Ψtotal = ψspace,symχS (29)

=⇒ the symmetry of the spatial two-electron wave function de-
pends on the symmetry of the associated two-spin state.

The two-electron spatial states can be written down is either of two forms

ΨS(r1, r2) =
1√
2

(ψa(r1)ψb(r2) + ψa(r2)ψb(r1)) (30)

if the electrons are in the spin singlet state S,

ΨT (r1, r2) =
1√
2

(ψa(r1)ψb(r2)− ψa(r2)ψb(r1)) (31)

if the electrons are in the spin triplet state T .
The energies of electron-electron interaction calculated for singlet (30) and

triplet (31) states di�er by the quantity

Jab =

∫
d3r1d

3r2ψ
?
a(r1)ψ?b (r2)

κe2

|r1 − r2|
ψa(r2)ψb(r1) (32)

Quantity (32) is called exchange integral.
It describes the purely quantum-mechanical exchange interaction.
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Ferromagnetism

The ferromagnetic properties of materials can be described by the Heisen-
berg model.

Heisenberg Hamiltonian

H = −
∑
<a,b>

JabSa · Sb . (33)

In Eq. (33), the sum runs over all di�erent pairs of atoms < a, b >.
Jab = exchange integral
Sa, Sb = e�ective spins of atoms localized in positions Ra and Rb.
Assume that Jab > 0.
If the spins are parallel, i.e., ↑↑, Sa ·Sb > 0, therefore, according to (33), the

energy contribution is negative, i.e., we are dealing with the e�ective attraction.
=⇒ feromagnetism
For ↑↓ Sa · Sb < 0, therefore, the energy contribution is positive (e�ective

repulsion)
=⇒ diagmagnetism
Important remark:

The value of exchange integral J results from the Coulomb electrostatic
interactions and one-electron atomic wave functions.

=⇒ the electrostatic interactions between electrons and nuclei are responsi-
ble for the ferromagnetism.
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Figure 11: Precession of electron spin ~s in the spin-orbit magnetic �eld ~BSO.
If the electron moves in x direction (i.e., along the nanowire axis) and electric
�eld ~F generated by the gate is oriented in the y direction, i.e., ~F = (0, Fy, 0),
then ~BSO = (0, 0, BSO).

4 Summary

4.1 Application: Spintronics

Spin precession resulting from the spin-orbit coupling

The spin-orbit interaction leads to the precession of the electron
spin around spin-orbit magnetic �eld BSO.

The precession around the BSO can be controlled by the electric
�eld F that is generated by the external gate voltage Vg.

=⇒ all electric devices

Spintronic devices

• spin �lter (analog of the light polarizator)

• spin splitter (analog of the birefractive crystal)

• spin transistor (analog of the electro-optical modulator)

Example: nanowire-based spin splitter
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Figure 12: Dispersion relation E(k) for spin-up and spin-down electrons calcu-
lated for (a) the center of the QPC and (b) the contacts (1, 2, 3). (c) Schematic
of the Y-shaped nanowire structure with the QPC. Red (blue) arrows show the
spin-up and spin-down currents, magnetic �eld B = (0, 0, B).

Figure 13: Spin transport via the edge states. Red (blue) arrows correspond to
the spin-up (down) current.
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Figure 14: Spin conductance G and spin polarization P = G↑−G↓ for (a) B = 1
T and (b) B = 3 T as a function of the con�nement energy ~ω of the electron
in the QPC.

4.2 Basic research: Negative absolute temperature

(4.B) Basic research: Negative absolute
temperature

Formal de�nition of temperature

T = (∂S/∂E)−1 (34)

S = entropy, E = total energy
Usually,

∂S/∂E > 0 =⇒ T > 0 .

However, in spin systems in the external magnetic �eld, we can obtain

∂S/∂E < 0 =⇒ T < 0 .

Negative absolute temperature has been realized in the spin nuclear system
in the external magnetic �eld

(in NMR-type apparatus).
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Figure 15: Entropy vs energy. S. Braun & U. Schneider, Ludwig-Maximilians
University, Munich.

Figure 16: Experimental realization of nano- and picokelvin negative tempera-
tures in silver and rhodium. O.V. Lounasmaa et al.
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Hypothetical existence of the negative absolute temperature in the
Universe

Observable/non-observable structure of the Universe:

light matter (∼ 5% of the total energy of the Universe) + dark matter
(23%) + dark energy (72%)

The observed expansion of the Universe is in contradiction to the at-
tractive character of the gravitational forces.

Hypothesis

The dark energy possesses the negative absolute temperature, which
leads to the e�ective repulsion that causes the accelerated expansion of the Universe.
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