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1 Simple description

In this tutorial we derive the profile and energy of domain walls in simple cases. The domain wall will be

modeled as a one-dimensional object, describing the spatial variation of magnetization with the function

θ(x). Let us assume the following free boundary conditions, mimicking two extended domains with
opposite magnetization vectors separated by a domain wall whose profile we propose to derive here:

θ(−∞) = 0 and θ(+∞) = π. We assume the simplest form of volume density of magnetic anisotropy,
uniaxial of second order: E(θ) = Ku sin2 θ. We recall that the volume density of exchange energy reads, in
its micromagnetism form: Eex = A(dθ/dx)2, with A the exchange stiffness.

1.1 Dimensional analysis

Based on a dimensional analysis, exhibit approximate expressions for both the domain wall width δ and
the domain wall energy E. What are the SI units for E? Discuss the form of these quantities in relation

with the meaning and effects of exchange and anisotropy.

1.2 Simple variational model

We assume the following solution for a wall with width `: θ = 0 for x < −`/2, θ = π(x/` + 1/2) for
x ∈ [−`/2; `/2] and θ = π for x > `/2. Plot this profile. Calculate the total anisotropy and exchange
energy of the system, E. Provide the value of ` minimizing energy, and the resulting energy. Discuss
both.

2 Euler-Lagrange equation

We will seek to exhibit a magnetization configuration that minimizes an energy density integrated over

an entire system. Finding the minimum of a continuous quantity integrated over space is a common

problem solved through Euler-Lagrange equation, which we will deal with in a textbook one-dimensional

framework here. Let us consider a microscopic variable defined as E(θ, dθ/dx), where x is the spatial
coordinate and θ a quantity defined at each point. In the case of micromagnetism we will have:

E
[
θ(x), dθ

dx (x)
]
= A
[
dθ

dx (x)
]2
+ Ea[θ(x)] (1)

When applied to micromagnetism Ea(θ) may contain anisotropy, Zeeman and dipolar terms (the latter
taken as local through the hypothesis of demagnetizing coefficients or other approximations). We define

the integrated quantity:

E[θ] =

∫ xB

xA
E
[
θ(x), dθ

dx (x)
]
dx + EA [θ(xA)] + EB [θ(xB)] . (2)

A and B are the boundaries of the system, while EA(θ) and EB(θ) are surface energy terms. These may
stem from,e.g., surface magnetic anisotropy, or the Dzyaloshinskii-Moriya interaction. Let us now con-
sider an infinitesimal function variation δθ(x) for θ. Show that extrema of E are determined by the fol-
lowing local relationships:
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Figure 1: Bloch domain wall profile: the exact solution (green dots) versus the asymptotic profile (red line). The

solution with linear ersatz is shown as a dark line.

∂E
∂θ
− d

dx

(
∂E
∂ dθ
dx

)
≡ 0 (3)

dEA
dθ
− ∂E
∂ dθ
dx

∣∣∣∣∣A = 0 (4)

dEB
dθ
+
∂E
∂ dθ
dx

∣∣∣∣∣B = 0 (5)

Note that equations Eq.(4) and Eq.(5) differ in sign because a surface quantity should be defined with

respect to the unit vector normal to the surface, with a unique convention for the sense, such as the

outwards normal. Here the abscissa x is outwards for point B however inwards at point A. An alternative
microscopic explanation would be that for a given sign of dθ/dx the exchange torque exerted on a
moment to the right (at point B) is opposite to that exerted to the left (at point A), whereas the torque
exerted by a surface anisotropy energy solely depends on θ.

3 Micromagnetic Euler equation

Apply the above equations to the case of micromagnetism [Eq.(1)]. Starting from Eq.(3), exhibit a dif-

ferential equation linking Ea(θ) with dθ/dx. Equations 4-5 are called Brown equations. EA(θ) and EB(θ)
may be surface magnetic anisotropy, for instance. Discuss the microscopic meaning of these equations.

Comment the special case of free boundary conditions (all bulk and surface energy terms vanish at A
and B), in terms of energy partition. Show that E can be expressed as:

E[θ] = 2

∫ θ(xB)

θ(xA)

√AEa(θ) dθ (6)

4 The Bloch domain wall

By integrating the equations exhibited in the previous section, derive now the exact profile of the domain

wall:

θ(x) = 2 arctan
(
exp

x
Δu
)

(7)

and its total energy E. Δu =
√A/Ku is the anisotropy exchange length.

The most common way to define the Bloch domain wall width δBl is by replacing the exact θ(x) by its
linear asymptotes (red line on Figure 1). Derive δBl as a function of Δu.
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Let us stress several issues:

• The model of the Bloch wall was named after D. Bloch who published this model in 1932[1].

• As often in physics we have seen in this simple example that a dimensional analysis yields a good

insight into a micromagnetic situation. It is always worthwhile starting with such an analysis before

undertaking complex analytical or numerical approaches, which especially for the latter may hide

the physics at play.

• We have exhibited here a characteristic length scale in magnetism. Other length scales may occur,

depending on the energy terms in balance. The physics at play will often depend on the dimen-

sions of your system with respect to the length scales relevant in your case. Starting with such an

analysis is also wise.

• When the system has a finite size the anisotropy and exchange energy do not cancel at the bound-

aries. The integration of Euler’s equations is more tedious, involving elliptical functions.
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