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1. Hohenberg-Kohn-Sham theory & Local Density Approximation

H. Eschrig, The Fundamentals of Density Functional Theory, Teubner-Texte zur Physik, Vol.

32, Teubner, Stuttgart 1996, ISBN 3-8154-3030-5.

M. Richter, Density Functional Theory applied to 4f and 5f Elements and Metallic

Compounds, Handbook of Magnetic Materials (Ed. K.H.J. Buschow), Vol. 13, Elsevier,

Amsterdam 2001, pp. 87-228, ISBN 0-444-50666-7.

Our starting point is the non-relativistic Coulomb-Schrödinger Hamiltonian Ĥ
with fixed positions of the nuclei, generating the potential vnuc:

Ĥ =

N∑
i

−∆i

2
+ vnuc(ri) +

1

2

∑
j 6=i

1

|ri − rj|

 = T̂ + V̂ + Û ,

(Ĥ − Eν)ψν(r1, σ1; . . . ; rN , σN) = 0 ,

with many-particle wave function ψν for N electrons at coordinates (ri, σi).
There is no spin-dependent interaction. Where do magnetic states come from?
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Numerical solutions for ψν can be obtained up to N ≈ 10. For N > 100, the
stationary states ψν cannot be resolved in general.

Example: an N-particle Ising system with
stochastic interaction has 2N−1 different levels.

Mean level distance: ∆E ≈ E0/2
N−1.

For N = 100 and E0 = 10 eV, resolution of a
single level needs 106 years.

Thus, ψν has no meaning for N > 100. H =
∑100
j>i Jijs

z
i s
z
j

Exception: the ground state, ψ0, has a meaning:

(i) it serves as reference for quasi-stationary (spin or charge) excitations;

(ii) the ground-state energy E0[vnuc[Rs]] allows to determine stable structures
with nuclear positions [Rs].
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How can E0[vnuc] be calculated?

Hohenberg and Kohn [PR 136 (1964) B864]; Levy [PRA 26 (1982) 1200]; Lieb
[Int. J. Quant. Chem. XXIV (1983) 243]:

E0[vnuc] = min
ψ
〈ψ|Ĥ|ψ〉 = min

n

{∫
d3r vnucn+ min

ψn
〈ψn|T̂ + Û |ψn〉

∣∣∣∣∫ d3r n = N

}
,

where ψn are all wave functions that generate a density n(r). Definition:

min
ψn
〈ψn|T̂ + Û |ψn〉 =: F [n] =: Ts[n] + EH[n] + Exc[n] .

Here, the exchange-correlation energy Exc[n] contains all contributions which are
not included in the other two terms,

(i) the mean-field Hartree energy:

EH =
1

2

∫ ∫
d3rd3r′

n(r)n(r′)

|r− r′|
,
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(ii) the kinetic energy of a model system of non-interacting electrons with
density n:

Ts[n] =

N∑
i

〈φi| −∆/2|φi〉 .

The φi can be obtained from

[
−∆

2
+ vnuc(r) + vH(r; [n]) + vxc(r; [n])

]
φi = εi φi ,

with n =
∑N
i φiφ

∗
i and φi being the N lowest single-particle eigenstates in a

corresponding effective potential,

veff = vnuc + vH + vxc = vnuc +

∫
d3r′n(r′)/|r− r′|+ δExc[n]/δn .

Kohn and Sham [PR 140 (1965) A1133].
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What does the exchange-correlation potential vxc mean?

(i) Exchange “x”:

ψ(r1, σ1; . . . ; r2 = r1, σ2 = σ1; ...) = 0

for Fermions;

(ii) Correlation “c”:

ψ(r1, σ1; . . . ; r2 = r1, σ2; ...) <

ψ(r1, σ1; . . . ; r2 6= r1, σ2; ...)

due to Coulomb repulsion.

The total energy is lowered due to the xc-
hole around each electron. Thus, vxc is
always attractive, while vH is repulsive. The
xc potential corrects both the mean-field
treatment of the Coulomb interaction and the
single-particle treatment of the kinetic energy.
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Up to this point, the theory is exact. However, vxc is in general not known and
has to be approximated. There exists a multitude of different approximations for
the xc potential: LDA, GGA, metaGGA, etc.

Most of these approximations do not contain free parameters. However, they
should not be called “ab initio”, since they do not solve the general
Coulomb-Schrödinger Hamiltonian (this is attempted by quantum chemical
methods). Rather, these methods solve a certain model, approximating Ĥ.

For the homogeneous interacting electron gas, vhom
xc (n) has been obtained

numerically by Ceperley and Alder [PRL 45 (1980) 566].

Local Density Approximation (LDA): vxc(r; [n]) ≈ vhom
xc (n(r)).

Roughly, vhom
xc ∝ n1/3 and Ehom

xc ∝ n4/3. This is similar to what is found for the
exchange energy in the Hartree-Fock approximation.

The mostly used parameterization of LDA has been proposed by Perdew and
Wang [PRB 45 (1992) 13244]: vPW92

xc (n) ≈ vhom
xc (n).
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Remarks:

LDA, GGA and similar approxiations are rather successful in the calculation of
structural properties, elasticity, phonons.

The interpretation of Kohn-Sham single-particle energies in terms of charge
excitations is justified only in so-called “weakly correlated” materials. This
notation is only loosely related with the types of correlations we discussed. What
is meant is that charge excitations in such materials are well screened by valence
electrons.

A number of codes is available which solve the
non-linear integro-differential equations with different
methods. They contain typically 105 lines of source
code and need 10-20 person years development.
Total energy deviations between good codes: ≈ 1
meV/atom.

n

v

φ, ε

iterations

self−consistent

Kohn−Sham
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2. Tight-binding approach and chemical binding in a nutshell

J. Singleton, Band Theory and Electronic Properties of Solids, Oxford Master
Series in Condensed Matter Physics, Oxford University Press, Oxford 2006, ISBN
0-19-850644-9.

C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics, Vol. II,
Hermann, Paris 1977, ISBN 0-471-16435-6.

Up to now, nothing has been told about the character of the Kohn-Sham
single-particle orbitals φi. We therefore proceed from the most simple case of
atomic orbitals via molecular orbitals to spatially extended Bloch states.

– Typeset by FoilTEX – 9



The H2 molecule, considered in LDA and adiabatic approximation:

vH2
nuc = −1/|r−R1| − 1/|r−R2| ; N = 2.

Minimalistic Ansatz for φ:

φ = c1ϕ
H
1s(|r−R1|) + c2ϕ

H
1s(|r−R2|) =: c1ϕ1 + c2ϕ2

(−∆/2 + vH2
eff − ε)(c1ϕ1 + c2ϕ2) = 0

This yields the 2× 2 matrix equation∑
j

cj(−∆/2 + vH2
eff − ε)ij = 0

with (ϕi|Â|ϕj) =: Aij.
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Separate the atomic state energy, εH
1s, from the “crystal field”, ∆ε:

(−∆/2 + vH2
eff )ii = (−∆/2 + vH

eff)ii + (vH2
eff − v

H
eff)ii =: εH

1s + ∆ε ; (i 6= j) .

Tight-binding approximation: (−∆/2− ε)ij ≈ 0 ; (i 6= j).

Hopping integral: t =: (vH2
eff )ij ; (i 6= j).

This yields the solutions:

εH2
bonding = εH

1s + ∆ε− t , c1 = c2 ;

εH2
antibonding = εH

1s + ∆ε+ t , c1 = −c2 .

Remarks:

veff needs self-consistent calculations.

As a result, the binding energy (6.6 eV per
H2) is smaller than 2(t−∆ε) = 7.5 eV.

ε1s ε1s

ε
σ

ε

H HH2

t

∆ε

ε
σ*
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Toward extended systems: Bloch’s theorem.

X-ray diffraction shows that the charge distribution in single crystals is periodic.
This means, that also vLDA

eff is periodic: vLDA
eff (r + R) = vLDA

eff (r) , if R is a
lattice vector.

Then, the Kohn-Sham states can most conviniently be chosen as Bloch states in
this periodic potential:

φk(r + R) = eikRφk(r) .

The charge density evaluated from this set of states has the same symmetry as
the initial potential. Thus, the initial symmetry is always kept in the Kohn-Sham
self-consistent cycle. (This does not always hold, if spin-orbit coupling is
considered.)
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Infinite H-chain: vnuc(r) =
∑integer
m (−1/|r−Rm|) ; Rm = m(0, 0, a) .

One-band ansatz:

φk(r) =
1√
N

integer∑
m

e−ikRmϕ1s(|r−Rm|) =:
1√
N

integer∑
m

e−ikmaϕm .

Nearest-neighbor tight-binding:

−(veff)m,m+1 =: t ; (veff)m,n ≈ 0 (|m−n| > 1) ; (−∆/2−εk)m,n ≈ 0 (m 6= n)

provides
εk = ε1s + ∆ε− 2t cos(ka) ; ∆ε = (vchain

eff − vH
eff)00 .

This dispersion has a period of 2π/a and a band width of 2t.

– Typeset by FoilTEX – 13



3. Exchange, the root of condensed matter magnetism

S. Blundell, Magnetism in Condensed Matter, Oxford Master Series in
Condensed Matter Physics, Oxford University Press, Oxford 2006, ISBN
0-19-850591-4.

J. Kübler, Theory of Itinerant Electron Magnetism, International Series of
Monographs on Physics, Vol. 106, Oxford Science Publications, Clarendon
Press, Oxford 2000, ISBN 0-19-850028-9.

We step back to the case of a free atom and consider an incompletely filled
atomic shell with l 6= 0.

One electron: trivial case with s = 1/2.

Two electrons: Is the ground state a singlet S = 0 (↑↓) or a triplet S = 1 (↑↑) ?
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r
1

r
2

Remember, that the two electrons move in a
correlated way due to:

(i) (Pauli) exchange (kinematic correlation),
ψ(r1, σ1; r1, σ1) = 0 ;

(ii) Coulombic (or, dynamic) correlation,
ψ(r1, σ1; r1, σ2) < ψ(r1, σ1; r2 6= r1, σ2).

This correlated movement produces an xc-
hole around each electron, which reduces the
electron-electron interaction energy.

Thereby, the combined effect of exchange and
Coulomb correlation present in the case ↑↑,
S = 1, is stronger than the effect of Coulomb
correlation alone in the case ↑↓, S = 0.

Thus, the ground state of free atoms is always
a state with the largest possible total spin (first
Hund rule).
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What is the energy scale related to Hund’s first rule?

Experimental 4f-ESP: spin
polarization energies of
lanthanide3+-ions. Data are
taken from J. Melsen et al.
[J. Alloys and Comp. 209
(1994) 15], who evaluated
spectroscopic data (energy
differences between the
ground-state spin multiplet
and the gravity center of the
configuration).

The two branches meeting at half-filling reflect the electron-hole symmetry. The
spin polarization energy is approximately proportional to the number of electron
(or hole) pairs. For one electron (or one hole) in the shell, ESP = 0: there is no
self-exchange. The energies are comparable with chemical binding energies.
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Consider now the other extrem case, the interacting homogeneous electron gas.
It should now be allowed to spin-polarize, n = n↑ + n↓.

Two of the total energy contributions depend on
the degree of spin polarization:

Ehom
x = −Cx

[
(n↑)4/3 + (n↓)4/3

]
(HF; QMC);

T hom
s = +Cs

[
(n↑)5/3 + (n↓)5/3

]
(Sommerfeld).

Imbalance between n↑ and n↓ gains exchange
energy and costs kinetic energy, both effects arising
from the stronger than linear dependence on n.

n→ 0 : Ex/Ts →∞ ; n→∞ : Ex/Ts → 0 .

Thus, spontaneous polarization occurs below a
critical value of n.

In free atoms, the kinetic energy is mainly determined by the orbital quantization
and does only marginally depend on the spin polarization. Thus, there is no
critical n for the first Hund rule. In solids, both situations may be present.
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Numerical calculations (Ceperley and Alder [PRL 45 (1980) 566]; about 10.000
quotations) provide a yet more complex picture:

Energy of three possible states of a homogenous electron gas vs. rs ∝ n−1/3.

At high densities (small rs), the
unpolarized Fermi liquid is most stable;
at intermediate densities, the ground
state is a spin polarized Fermi liquid;
at low densities, a Wigner crystal with
localized electrons is formed. These three
states contain a good part of the solid
state physics investigated in the past
decades. While the transition between
unpolarized and polarized states is well
described in recent DFT approximations,
the localization is still an issue.
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Consider now the possibility of spin polarization in a general system. If the
densities of spin-up and spin-down electrons, n↑ and n↓, resp., are different, both
species will experience different xc potentials, v↑xc and v↓xc, since only electrons of
the same spin contribute to the respective x-part of these potentials.
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The difference between v↑xc and v↓xc can be considered as a modern version of the
Weiss field. This is the fundamental idea of the spin density functional theory,
formulated by von Barth and Hedin [J. Phys. C 5 (1972) 1629].∑

σ′

[(
−∆

2
+ vnuc(r) + vH(r; [n])

)
δσσ′ + vxc,σσ′(r; [nσσ′])

]
φσ
′
i = εiφ

σ
i ,

nσσ′ =

N∑
i

φσi φ
σ′∗
i ,

vxc,σσ′(r; [nσσ′]) =
δExc[nσσ′]

δnσσ′
,

The matrix notations allow for the consideration of canted spin densities Σ and
related canted xc-fields (Weiss fields) Bxc:

nσσ′ = (n δσσ′ + σ Σ)/2 ; vxc,σσ′ = v̄xc δσσ′ + µB σ Bxc .
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The Local Spin Density Approximation (LSDA) is constructed in complete
analogy to the LDA:

v̄xc(r; [nσσ′]) ≈ vhom
xc (n(r), |Σ|(r)) ;

Bxc(r; [nσσ′]) ≈ Bhom
xc (n(r),Σ(r)) .

Again, the numerical data obtained by Ceperley and Alder [PRL 45 (1980) 566]
are used in the LSDA parameterization: the same PW92 by Perdew and Wang
[PRB 45 (1992) 13244] as in LDA.

The exchange field Bxc is in many cases much stronger than common magnetic
fields. Due to its Coulombic origin, it can reach the order of 104 Tesla.
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A very useful corollary of LSDA is the LSDA Stoner criterion, see Gunnarsson [J.
Phys. F 6 (1976) 587] and Janak [PRB 16 (1977) 255]:

D(EF)ILSDA ≥ 1 .

Here, D(EF) is the density of states at the Fermi level and ILSDA is the Stoner
parameter in LSDA. This criterion is a sufficient, but not a necessary condition
for the instability of the unpolarized state. As before, the instability originates
from a competition between gain in xc energy in favor of the polarization and a
loss in kinetic energy due to the related band splitting. Without a detailed
justification, we note that

ILSDA = − 1

D2(EF)

∫
ec

d3r

(
∂n(r, ε)

∂ε

∣∣∣∣
ε=EF

)2
δ2Exc

δΣ2

∣∣∣∣
Σ=0

.

The integral runs over the elementary cell and n(r, ε) denotes the charge density
obtained from all states up to the energy ε.
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Three further useful implications.

(i) The spin splitting of band states of the magentically active shell, e.g.,
transition-metal 3d states, is proportional to the spin moment M of this shell:

ε↓ − ε↑ ≈ 1

µB
ILSDAM , M = −µB

∫
ec

d3r Σ(r) .

(ii) Exchange-enhanced Pauli susceptibility χs:

χs = χP/(1−D(EF)ILSDA) ,

with χP denoting the Pauli susceptibility χP = µ2
B D(EF).

Examples: χs/χP = 1.1 (Cu); 1.9 (Y); 5 . . . 10 (Pd).
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(iii) The LSDA spin polarization energy is well approximated by 2ILSDAS2. This
is approximately ILSDA times half of the number of electron pairs with the same
spin.

Note the self-interaction error of LSDA for small spin moments.
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4. Binding meets exchange: applications

The following calculations were done with the full-potential local orbital code
(FPLO). This code uses an optimized set of atom-centered numerical basis
functions.

Free iron atom: S = 2

The level scheme of a free
iron atom is simple, but not
trivial. Note the degeneracy of
3d and 4s states in the minority
spin channel, which leads to a
fractional occupation.

ε

Fe

4s

3d
4I

3d
1.2

4s
0.8

LSDA
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Iron dimer: S = 3.

The level scheme of an iron
dimer is already much more
complicated than that of the
atom. The minority-spin dδ level
is only half occupied. If spin-orbit
coupling is considered, this level
is split and gives rise to a very
large magnetic anisotropy. [D.
Fritsch et al., J. Comp. Chem.
29 (2008) 2210]

sd σ sd σ

sd σ*

sd σ*

*ds σ

*ds σ

ds σ

ds σ

  d π

  d π*  d π

*  d π

  d δ

*  d δ

*  d δ

δ  d

ε
Fe 2
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Total energy of LaFe13−xSix vs. spin
moment: Comparison with bcc iron

very flat E(M):

small external fields produce large ∆M
and yield a strong magneto-caloric
effect.

The ground-state Fermi levels lie in
the first DOS-valley below (above)
the position in the non-magnetic
state.
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LaFe12Si: Why is E(M) so flat?

Different from the DOS of bcc Fe, the DOS of LaFe12Si has four pairs of
minima close to the Fermi level. The Fermi level is approximately in the middle
of each pair.
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LaFe12Si: Why is E(M) so flat?

Model of the DOS: Generalized Stoner criterion:

4 I (1/D(EF)↑ + 1/D(EF)↓)−1 > 1

If the spin splitting is enhanced, the
Fermi level crosses several sequences of
minima and maxima. Accordingly, the
total energy has wiggles with maxima
at those places, where the generalized
Stoner criterion is fulfilled.

Kuzmin and Richter, PRB 76 (2007)
092401.
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LaFe12Si: Experimental confirmation.

A series of up to three metamagnetic transtions observed in La(Fe;Si)13Hx.

Lyubina et al., PRL 101, 177203 (2008).
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Spin-locked edge currents: a weak 3D topological insulator.

Structure of Bi14Rh3I9, a
layered insulator with a stack of
ionic layers, [(Bi4Rh)3I]2+ and
[Bi2I8]2−.

B. Rasche et al., Nature
Materials 12 (2013) 422.
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Parity analysis of the LDA Bloch states with spin-orbit coupling shows that this
material is the first (and, up to now, the only) realization of a weak 3D
topological insulator. Comparison between angle-resolved photoemission and
LDA band structures to confirm that the Kohn-Sham states make sense.

B. Rasche et al., Nature Materials 12 (2013) 422.
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STM observation of the in-gap states at an edge on the cleaved surface of
Bi14Rh3I9. These are the states which are supposed to be spin-locked.

C. Pauly et al., Nature Physics 2015.
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Summary

- DFT and SDFT are independent exact theories to obtain the ground state
energy and related density or spin density of the quantum chemical Hamiltonian.

- LDA and LSDA (or similar) are model theories useful for realistic calculations.

- Exchange fields are stronger than the fields produced by electromagnets, as
they originate from the Coulomb interaction.

- Quantities accessible to L(S)DA or similar calculations:

densities; band structures; Fermi surfaces; semiclassical transport properties;
elastic properties; (magneto)optical properties; chemical binding energies;
magnetic anisotropy; model parameters for Heisenberg, Rashba, crystal field
models; topological invariants; etc.

- If you aim at evaluating these quantities, be aware of the limitations of the
Kohn-Sham states.
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Thank you for your attention!
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