PHENOMENOLOGY OF MAGNETIC LOSSES

Any variation of the flux density in a magnetic material is associated with
dissipation of energy. The main physical mechanisms for dissipation are: 1)
Eddy currents and the related Joule effect, associated with the scattering of
moving charges with phonons and various lattice defects. The Joule effect is
dominant in conducting and semiconducting materials. 2) Spin damping, related
to the transfer of energy from the precessing spins to the lattice, either directly
or via magnon-phonon interaction. This is the favorite mechanism in insulating
magnets.
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Magnetic losses are conveniently defined under given time periodic law for the
rate of change of the magnetization. Typically, one has to deal with either
sinusoidal or triangular B(tf) waveform. The viscous character of the magnetization
process makes attaining a given peak polarization under defined B(f) law
increasingly difficult with increasing the magnetizing frequency.

\
There is an obvious practical appeal to the study of magnetic losses, because
there is a stringent need for ther prediction in most electrical/electronic
applications. Besides the unnecessary waste of energy, the fast increase of the
power loss with the magnetizing frequency (somewhat [ ) can make overheating
the main obstacle to high-frequency applications (P = ¢ dT/dt).

| |
For sample of volume V subjected to periodic excitation at the frequency = 1/T,
we can express the eddy-current energy loss per unit volume on a period as

The space-time behavior of the current density j(r, 1) is
hopelessly complicated. We need to focus on the
general features of the loss behavior, to be treated
A from a statistical viewpoint.
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W = JbHdB: f)uOHdH+ PHdJ: f)HdJ

H and X conjugate work variables

dU = HdX + 00

Isothermal cycle: f)dU = 0
PHdX =
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Energy loss (J/m’)
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Excess energy loss under generic
polarization rate dJ/dt
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The hysteresis (quasi-static) energy loss cannot be generally predicted from
knowledge of the structural properties and the intrinsic magnetic parameters. At

low inductions, however, magnetic hysteresis can usually be described by the
analytical Rayleigh law.

0’06_: Pure Ni foil

J(H)= (a+ pr)H¢§(H; - H?)

_ 2
Jp— aHp+pr

a = initial permeability, resulting from
domain wall bending and moment rotations
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The dynamic loss can be formally assessed in a linear (or, in practice, quasi-
linear) material, with defined DC permeability. Dissipative phenomena bring
about a time delay of the B(t) waveform with respect to the H(f) waveform and
the resulting hysteresis loop takes an elliptical shape

0.010 - _ Co,FeB,,Si,. <
- J 10mT /
0005 i H(t)= H, coswt
g o.ooo: ﬂ B(t): Bp COS(wf' 5):
| = B cosdcoswtt B sind sinw ¢
-0.005 ) — Bm20Hz # p
/ i The associated energy loss (area
"""""""""" ;1" of the elliptical loops) is
dB(t .
W = H(t) ()dt= mH B sind
df P P
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When dealing with a linear system we can attack in a simple way the
phenomenology of energy loss and the related concepts of complex
permeability, quality factor, and equivalent L - R circuit
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The concept of loss separation can be given a solid physical justification in
terms of characteristic space-time scales of the magnetization process

(G. Bertotti, Hysteresis in Magnetism). It is valid in both conducting and non-
conducting magnetic materials.

W=W,__+W,+W

hyst exc
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W(Jpaf) - Whyst(‘]p)+ kc1f+ kexc]fl/2 Y

ated in the simple case of a thin lamination (width >>
2-varying induction (e. g., B(f) = B, sin aX) uniform across
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The full approach to the classical eddy current losses, valid for whatever
lamination thickness and material conductivity is based on the diffusion equation
for the internal magnetic field. 4

DxE:-d_B DXH:—]' g
H.(t

dt N
—— o - ——  — == kf H () = H,(8)-H, (1)

v X

a ZH dH and the boundary conditions
> - O —=
dy dt H(t)= H (t) for y=td/2

0H/dy=0 at y=0
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The concept of magnetic losses and hysteresis are associated with that of
lag in time of induction with respect to the field. We can therefore talk aboy
a time constant (or a distribution of time constants).

The simplest case of relaxation is one 1.0
where the change of the Z
magnetization with time is 08
proportional to its deviation from the Z
equilibrium value 06-
< |

dM/dt = k(MO - M(t)) = 0.4-:
M(t)= (1- " )M,

0.0- ..... T

5 due to eddy currents, the time constant will
luctivity, permeability, and sample size.
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