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Institut Néel; CNRS-UJF, BP 166, F-38042 Grenoble cedex 9, France

(Dated: 28 août 2011)

The purpose of the tutorial is to get familiar with some basic knowledge and manipulation of
micromagnetism. We will work around a Bloch domain wall, and a simple model of defect to explain
pinning-related coercivity. The solution will be given on the web site together with the solution for
the vortex problem, which introduces the exchange length.
Preamble. We will use the following shortcuts: ∂xθ for ∂θ/∂x and ∂nx θ for ∂nθ/∂xn.

I. FRAMEWORK OF MICROMAGNETISM

Most of micromagnetic modeling relies on two hypotheses:

– The spatial variation of any physical quantity (magnetic moments etc.) is slow at the length
scale of inter-atomic distances. This allows one to describe physical systems in a continuous
medium approach and make use of the power of integral theory and differential equations.

– The resulting magnetization vector field (i.e. the density of magnetic moments per unit vo-
lume) has a uniform and constant magnitude: |M(r)| ≡Ms, the spontaneous magnetization.

A major purpose of micromagnetism is to exhibit stable (or metastable) magnetization arran-
gements under static conditions. These minimize globally (resp. locally) the total energy of the
system.

In most situations the density of energy comprises at most four terms: magnetic anisotropy
Ea = Kfa(θ,ϕ), Zeeman energy Ez = −µ0M.H, self-dipolar energy Ed = −(1/2)µ0M.Hd and
exchange energy, which continuous form we propose to link with microscopic quantities in this
paragraph.

Let us consider exchange energy in a Heisenberg model : E = − 1
2

∑
<i,j> JSi.Sj , where the

summation concerns near(est) neighbors pairs < i,j >. J > 0 for ferromagnets.
In the simple framework of a one-dimensional crystal with atomic spacing a, show that the

density of exchange energy can be expressed as Eex = A(∂xθ)
2, assuming that the angle θ of

the magnetization vector has a slow variation between neighboring atomic sites. A is called the
exchange constant, which you will exhibit in terms of J and a.

In a three-dimensional body this energy is generalized to the expression:

Eex = A (∇m)
2
. (1)

(∇m)2 is a shortcut for
∑
i

∑
j(∂xj

mi)
2 where mi are the components of the reduced magneti-

zation m = Ms/Ms.

II. EULER-LAGRANGE EQUATION

We will seek to exhibit a magnetization configuration that minimizes the energy density inte-
grated over the entire system: E =

∫
E(r)dr. The problem of finding the minimum of a continuous

quantity integrated over space is a common problem solved through Euler-Lagrange equation,
which we will deal with in a textbook one-dimensional framework here.

Let us consider a microscopic quantity defined as F (θ,∂xθ), where x is the spatial coordinate
and θ a quantity defined at each point. In the case of micromagnetism we will have in general:

F (θ,∂xθ) = A (∂xθ)
2

+ E(θ) (2)
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E(θ) may contain anisotropy, dipolar and Zeeman terms. We define the integrated quantity:

F =

∫ B

A

F (θ,∂xθ) dx+ EA(θ) + EB(θ). (3)

A and B are the boundaries of the system, while EA(θ) and EB(θ) are surface energy terms.
Let us consider an infinitesimal function variation δθ(x) of θ. Show that extrema of F are

determined by the following relationships:

∂θF − ∂x (∂dxθF ) = 0 (4)

∂θEA − ∂dxθF |A = 0 (5)

∂θEB + ∂dxθF |B = 0 (6)

Notice that equations 5 and 6 differ in sign because a surface quantity should be defined with
respect to the unit vector normal to the surface, with a unique convention for the sense, such as the
outwards normal. Here the abscissa x is outwards for point B however inwards at A. An alternative
microscopic explanation would be that for a given sign of ∂xθ the exchange torque exerted on a
moment to the right (at point B) is opposite to that exerted to the left (at point A), whereas the
torque exerted by a surface anisotropy energy solely depends on θ.

III. THE BLOCH DOMAIN WALL

Let us assume the following free boundary conditions, mimicking two extended domains with
opposite magnetization separated by a domain wall whose profile we propose to derive here:
θ(−∞) = 0 and θ(+∞) = π. We will assume the simplest form of magnetic anisotropy, uniaxial of
second order: E(θ) = K sin2 θ.

Based on a dimensional analysis give approximate expressions for both the domain wall width δ
and the domain wall energy σ. What are the SI units for σ? Discuss the form of these quantities
in relation with the meaning and effects of exchange and anisotropy.

By integrating the equations exhibited in the previous section, derive now the exact profile of
the domain wall

θ(x) = 2 arctan[exp(x/δB)] (7)

and its energy σ.
The most common way to define the Bloch domain wall width δBl is by replacing the exact θ(x)

by its linear asymptotes. To shorten the expressions we often use the notation δB =
√
A/K, called

the Bloch parameter. Derive δBl as a function of δB .
Let us stress two issues:

– As often in physics we have seen in this simple example that a dimensional analysis yields
a good insight into a micromagnetic situation. It is always worthwhile starting with such an
analysis before undertaking complex analytical or numerical approaches, which especially for
the latter may hide the physics at play.

– We have exhibited here a characteristic length scale in magnetism. Other length scales may
occur, depending on the energy terms in balance. The physics at play will often depend on
the dimensions of your system with respect to the length scales relevant in your case. Starting
with such an analysis is also wise.

IV. AN EXAMPLE OF PINNING

We remain in a one-dimensional framework. Starting from a homogeneous material let us model
a local defect in the form of a magnetically-soft (i.e. zero anisotropy) insertion of width δ`, located
at position x. In the case where δ` � δB discuss what modeling of the domain wall is reasonable
to make. Discuss the boundary conditions at the defect edges.

Show that the energy of the domain wall with the defect at location x reads:
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E(x) = σ

[
1− 1

4

δ`

δB

1

cosh2(x/δB)

]
(8)

Draw a schematic graph of E(x) and display the characteristic length or energy scales. An
external field is then applied at an angle cosα with the easy axis direction in the domains. Assuming
that the profile of the domain wall (eq. 7) remains unaffected by the applied field (regime of weak
pinning), show that the propagation field of the domain wall over the defect reads:

Hp =
HK

cosα

δ`

δB

1

3
√

3
. (9)

Notice:

– The model of the Bloch wall was named after D. Bloch who published this model in 19321.

– The 1/ cosα dependence of coercivity is often considered as a signature a weak-pinning
mechanism, a law known as the Kondorski model2.

– This model had been initially published in 1939 by Becker and Döring3, and is summarized
I in the nice book of Skomsky Simple models of Magnetism4.

– While coercivity requires a high anisotropy, the latter is not a sufficient condition to have a
high coercivity. To achieve this one must prevent magnetization reversal that can be initiated
on defects (structural or geometric) and switch the entire magnetization by propagation of a
domain wall. In a short-hand classification one distinguishes coercivity made possible by hin-
dering nucleation, or hindering the propagation of domain walls. In reality both phenomena
are often intermixed. Here we modeled an example of pinning.

– Simple micromagnetic models of nucleation on defects5 were the first to be exhibited to
tentatively explain the so-called Brown paradox, i.e. the fact that values of experimental
values of coercivity in most samples are smaller or much smaller than the values predicted
by the ideal model of coherent rotation6.

Good references for micromagnetism are Hubert and Schäfer’s book7 (very large scope, many
references), Skomski’s 2003 review8 and later book4 and Aharoni’s book9 (a bit more mathematical
and centered on the author’s own contributions). For a super-light introduction to nanomagnetism
you may have a look at reviews10 ,11 ,12 ,13 .
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