<u>Crystal field for 3d ions : cubic crystal field</u>

Crystal field potential: $V_c = V_0(x^4 + y^4 + z^4 - 3/5r^4)$

d orbitals are splitted in 2 groups: e_g and t_{2g} ; 2 cases:

Filling of the d-orbitals following 1st Hund's rule (S maximum)

Quenching of orbital magnetic moment:

Wave functions of $\underline{e_g}$ states:

 $\frac{1}{\sqrt{2}}(Y_2^2 + Y_2^{-2})$ and Y_2^0

No orbital magnetism:

$$\left\langle \mathbf{e_{g}^{1}} \left| \mathbf{L_{\alpha}} \right| \mathbf{e_{g}^{2}} \right\rangle = \mathbf{0}, \alpha = \mathbf{x}, \mathbf{y}, \mathbf{z}$$

$$\underline{\mathbf{t}_{2g}} \underline{\text{states}}: \qquad \frac{1}{\sqrt{2}} (\mathbf{Y}_2^2 - \mathbf{Y}_2^{-2}), \frac{1}{\sqrt{2}} (\mathbf{Y}_2^1 - \mathbf{Y}_2^{-1}), \text{ and } \frac{1}{\sqrt{2}} (\mathbf{Y}_2^1 + \mathbf{Y}_2^{-1})$$

Diagonal matrix elements of L_{α} vanish, only off-diagonal elements: \Rightarrow « reduced » orbital moment

In cubic symmetry orbital magnetism is either quenched (e_g) or reduced (t_{2g}): <u>L is not given by Hund's rule</u>

Spin-orbit coupling is a smaller effect, acting mainly in t_{2g} states