Magnetic anisotropy or better Magnetocrystalline anisotropy

• The magneocrystalline anisotropy energy is expressed by the formula :

$$E_{a}(\theta,\phi) = \sum_{n=0}^{\infty} \sum_{m=0}^{n} K_{n}^{m} P_{n}^{m}(\cos\theta) \cos m\phi$$

- where P_n^m represents the Legendre polynoms,
- κ_n^m anisotropy constants,

 $\forall \theta$ and ϕ are the polar and azimutal angles (sphéric coordinates)

of magnetization direction.

•K.H.J. Buschow and F.R. de Boer (2003) "Physics of Magnetism and materials" Kluver Academic/Plenum publisher

E is an important parameter for soft and hard magnetic materials

Crystal electric field $V(\mathbf{r}) = \sum \sum_{i=1}^{n+1} A_{1}^{i} r^{l} Y_{1}^{m}(\mathbf{r})$ 1 m = -1

Sm

Nd

- Coupling with the 4f electronic shell
- Favors the orientation of the shell in the electric field gradient

- Hutchings, M. T. (1964) Solid state phys., 16, 227.
- Stevens coefficients

Anisotropy constant may vary with T !

May even change of sign

How to identify the Easy Magnetization Direction

 $\mu_0 H_a = (2K_1 + 4K_2)/M_s.$

Rare earth contribution to magnetocrystalline anisotropy $K_1(T=0) = -\frac{3}{2}\alpha_J \langle r^2 \rangle^{4f} (3J_z - J(J+1))A_2^0$

Purely Atomic parameter

$$\alpha$$
 second order Stevens coefficient (α) for R ³⁺

$$(3J_z - J(J+1))$$

 $\left< \frac{2}{r^2} \right>^{4f}$ 4f shell

Atomic environment electric charges

 A_2^0 Crystal electric field gradient

Remark :

$$\alpha_{\rm J} \langle r^2 \rangle^{4 \, \rm f} (3 \, J_z - J (J + 1))$$

Quadrupolar moment

Io <mark>f</mark>	order	Steve	<mark>ואַ∖₽ָּסּ</mark> פּ	ffiçien	Tb ³⁺	Dy ³⁺	Ho ³⁺	Er ³⁺	Tm ³⁺	Yb ³⁺
$\alpha_{\rm J} 10^2$	-5,71	-2,10	-0,64	+4,13	-1,01	-0,63	-0,22	+0,25	+1,01	+3,17

Similar equation for K₂; K₃ and so on

References

- K.N.R. Taylor et M.I. Darby, Physics of Rare Earth Solids, edited by Chapmam and Hall Ltd, London, 1972, p. 22. ISBN 0 412 101602.
- K.W.H. Stevens, Proc. Phys. Soc., 65, (1951), p. 209.
- K.H.J. Buschow and F.R. de Boer (2003) "Physics of Magnetism and materials" Kluver Academic/Plenum publisher
- K.H.J. Buschow, Magnetism and Processing of Permanent Magnet Materials, Handbook of Magnetic Materials Volume 10, édited by K.H.J. Buschow, Elsevier Science B.V., Amsterdam (1997), Ch. 4, p. 463. ISBN 0 444 853138.

Complex behaviour

Kl	$K_1 > 0$	$K_1 > 0$	$K_1 < 0$	$K_1 < 0$	
K ₂	$\infty > K_2 > - K_1$	$-K_1 > K_2 > -\infty$	$-K_1/2 > K_2 > -\infty$	$\infty > K_2 > - K_1/2$	
EMD	$\theta = 0;$	θ =	= 90;	$\theta = \arcsin(-K_1/2K_2)^{1/2};$	
	axe c	plan (de base	cône	