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PHYSICS OF EXCHANGE (SPIN DEPENDENT)
INTERACTIONS

between:

• band (itinerant) carriers

• band carriers and localised spins

• localised spins
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5. Kinetic exchange
Kondo hamiltonian
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7. Double exchange

8. Indirect exchange between localised spins

-- via carrier spin polarisation
Zener model, RKKY

-- via valence bands’/d orbitals’ spin polarisation
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Preliminaries



Dipole-dipole interactions 
(classical int. between magnetic moments)

Dipole-dipole interactions 
(classical int. between magnetic moments)

µ = - geffµBS,      Hab = µµµµaµµµµb ////rab
3 - 3(µµµµa rab)(µµµµa rab) ////rab

5

for S = 1/2, rab=  0.15 nm => 

Edd = 2µaµb ////rab
3 = 0.5 K = 0.4 T

(E = kBT or E = gµBB)

⇒ non-scalar
=> long range => remanence, demagnetization, domain structure, 

EPR linewidth, fringing fields in hybrid structures, …

⇒ too weak to explain magnitude of spin-spin interacti ons
���� quantum effects: Pauli exclusion principle + Coulomb int.



Exchange interactionExchange interaction

Hab = - SaJ(ra,rb)Sb

potential energy depends on spins’ directions

kinetic energy depends on spins’ directions

kinetic exchange

potential exchange



One electron approximation



Why one electron approximation is often 
valid?

Why one electron approximation is often 
valid?

• Quasi-particle concept: m* � m** -
-- one-electron theory can be used (interaction renormalizes only the 
parameters of the spectrum)

• Correlation energy of e-e interaction is the same in initial   
and finite state 

-- center mass motion only affected by the probe (Kohn 
theorem)

-- z-component of total spin affected (Yafet theorem)

• Momentum and (for spherical Fermi surface) velocity is
conserved in e-e collisions

• Total Coulomb energy of neutral solid with randomly 
distributed charges is zero



Electrostatic Coulomb interactions in solidsElectrostatic Coulomb interactions in solids

• Two energies
=> positive : repulsion between positive charges
=> negative : attraction between negative and positive charges

• Neutrality => number of positive and negative charges equal

• Partial cancellation between the two energies

EC = ½∫ d r1 ρp(r1) ∫ d r2 ρ p(r2) e2/| r1 - r2 | + ½ ∫ d r1 ρn(r1) ∫ d r2 ρ n(r2) e2/| r1 - r2 |

- ∫ d r1 ρp(r1) ∫ d r2 ρ n(r2) e2/| r1 - r2 |

… the number of pairs of the like charges is N(N-1)/2



Pair correlation function g(r)Pair correlation function g(r)

• g(r) probability of finding another particle at distance r

in the volume dr

• normalization: ∫dr ρ g(r) = N – 1

• an example:
random (uncorrelated distribution):

pair correlation function

g(r)

r

1

0



Total Coulomb energy for random distribution of 
charges

Total Coulomb energy for random distribution of 
charges

• For random distribution of charges, ρ = N p/V = N n/V

EC = ½∫ d r1 ρp(r1) ∫ d r2 ρ p(r2) e2/| r1 - r2 | + ½ ∫ d r1 ρn(r1) ∫ d r2 ρ n(r2) e2/| r1 - r2 | +

- ∫ d r1 ρp(r1) ∫ d r2 ρ n(r2) e2/| r1 - r2 | = 0!

=> Coulomb energy contributes to the total energy of the system and one-
electron approximation ceases to be valid if the motion of charges is 
correlated

g(r)

r

1

0

pair correlation function



Origin of correlations



Sources of correlation
(why motion and distribution of charges may not be independent)

Sources of correlation
(why motion and distribution of charges may not be independent)

• Coulomb interaction itself:
-- H−

-- exciton
-- ionic crystals
-- Wigner crystals 
-- Laughlin liquid
-- ….

Coulomb gap in g(r)

g(r)

r

1

0



Spin and statistics in quantum mechanicsSpin and statistics in quantum mechanics

The core of quantum mechanics:
• principle of linear superposition of  wave functions, also of a single

particle => interference
(Young experiment works with a single photon, electron, …)

• not all the solutions of a given Schroedinger equation (wave 
functions) represents states: initial and boundary conditions

• wave function of a system of many identical particle is (must be):
-- symmetric against permutation of two particles if their spin 

is muliple of  h/2π
- bosons � superconductivity, superfluidity,  B-E condensation, ...

-- antisymmetric otherwise
- fermions � nucleus, chemistry, magnetism, …..

Statistical transmutation, fractional statistics, ...



Many-fermion wave functionMany-fermion wave function

• H = Σl=1 to NHi + V(r(1),.., r(N))

Since ΨA(r(1),.., r1
(k),...,r2

(m),..., r(N))= −ΨA(r(1),.., r2
(k),...,r1

(m),..., r(N))

=> the probability of finding two fermions in the same place 
is zero

Correlation:

Fermions (with the same spin) avoid each other



Sources of correlation
(why motion and distribution of charges may not be independent)

Sources of correlation
(why motion and distribution of charges may not be independent)

• Coulomb interaction itself:
-- H−

-- exciton
-- ionic crystals
-- Wigner crystals 
-- Laughlin liquid
-- ….

Coulomb gap in g(r)

• Pauli exclusion principle
Exchange gap in g(r)

g↑↑↑↑↑↑↑↑(r)

r

1

0

g(r)

r

1

0



Construction of many body wave functionConstruction of many body wave function

• principle of linear superposition

• not all the solutions of a given Schroedinger
equation (wave functions) represent a state: initial 
and boundary conditions

• wave function of a system of many fermion system 
is (must be) antisymmetric



In the spirit of perturbation theory (Hartree-Fock approxi mation):
=> energy calculated from wave functions of noniteracting electrons, i.e.:

H = Σi Hi ;     Hi = Hi(r(i)) and thus:
• one-electron states are identical for all electrons
• many-electron wave function: the product of one-electron wave 

functions

consider a state A of N electrons distributed over αN states

ΨA(r(1),.., r(k),..., r(m),..., r(N)) = ψa1(r(1))…ψak(r(k))...ψam(r(m))...ψaN(r(N))

also  ΨA’ (r(1),.., r(m),..., r(k),..., r(N)) = ψa1(r(1))…ψam(r(k))...ψak(r(m))...ψaN(r(N)),

and all such wave functions and their linear superpositions correspond to 
the situation A (all electrons are identical!) and fulfilled Schroedinger 
equation giving the same eigenvalue (total energy)



Which of those wave functions represent a 
many electron state?

Which of those wave functions represent a 
many electron state?

The wave function has to be antisymmetric => 
Slater determinant

ψa1(r(1))   ...    ψa1(r(k))  … ψa1(r(m))  ...  ψa1(r(N))
...

ΨA = 1/√N!   ψak(r(1))   ...    ψak(r(k))  … ψak(r(m))  ...  ψa1(r(N))
…

ψam(r(1))   ...   ψam(r(k))  … ψam(r(m))  ...ψam(r(N))
…

ψaN(r(1))   ...    ψaN(r(k))  … ψaN(r(m))  ...ψaN(r(N))

ΨA(.., r1
(k),..., r2

(m),... ) = −ΨA(.., r2
(k),..., r1

(m),... ) -- OK
ΨA(.., r(k),..., r(m),... ) = 0 if αi = αj : Pauli exclusion principle



Slater determinant is an approximate wave 
function… (takes only the presence of exchange 
gap into account)

improvements:
• combination of Slater determinants 

(configuration mixing)
• variational wave function, e.g., Laughlin wave 

function in FQHE
• ….



Correlation effects for localised states



Energy of two electrons in quantum dots, 
atoms,...

Energy of two electrons in quantum dots, 
atoms,...

Η = Η1 + Η2 + V12

Ψs(r(1),r(2)) = (exp[-ar1-br2] + exp[-br1-ar2]) (1+c|r2-r1|) [ ↓↑ − ↑↓]/ √2

a, b, c – variational parameters

For H- ionisation energy ~0.7 eV

Ground state - singlet 1s 2  (or 1S) 



Correlation energy – Hubbard UCorrelation energy – Hubbard U

Η = Η1 + Η2 + V12 for Coulomb interactionV12 = e2/(ε|r1 − r2 |) 

E1 = E2 = − 1 Ry

Eb ≈ - 0.05 Ry
U

hydrogen ion H-



Correlation energy – Hubbard UCorrelation energy – Hubbard U

Η = Η1 + Η2 + V12 for Coulomb interactionV12 = e2/(ε|r1 − r2 |) 

E1 = E2 = − 1 Ry

Eb ≈ - 0.05 Ry
U

3d5

3d6
Mn atom

U = 1.2 Ry

hydrogen ion H-

in metals
reduced by
screening



Potential exchange – localised states



Wave function for two electrons in states αααα and ββββWave function for two electrons in states αααα and ββββ

Η = Η1 +Η2 + V12

Perturbation theory – effect of V12 calculated with unperturbed 
wave functions; antisymmetriccombination is chosen

ΨΑ (r(1),r(2)) = [ψα(r(1)) ψβ(r(2)) − ψβ(r(1)) ψα(r(2)) ]/√2

Entangled wave function for two electrons in orbital states α and β
taking spin into account:

singlet state: Ψs(r(1),r(2)) = [ψα(r(1)) ψβ(r(2) ) + ψβ(r(1)) ψ2(r(2))] [↓↑ − ↑↓]/2 

triplet states Ψt (r(1),r(2)) = [ψα(r(1)) ψβ(r(2) ) − ψβ(r(1)) ψ2(r(2))] ↑↑/ √2
=  [ψα(r(1)) ψβ(r(2) ) − ψβ(r(1)) ψ2(r(2))] ↓↓/ √2
= [ψα(r(1)) ψβ(r(2) ) − ψβ(r(1)) ψ2(r(2))] [↓↑ + ↑↓]/2

e.g., 1s12p1 configuration in He 



Energy for two electrons in states αααα and ββββEnergy for two electrons in states αααα and ββββ

Η = Η1 +Η2 + V12� Coulomb interaction

Perturbation theory – effect of V12 is calculated with
antisymmetricwave functions

singlet state: Es = <Ψs | H|Ψs> = Eα + Eβ + U + J/2

triplet states: Et = <Ψt | H|Ψt> = Eα + Eβ + U − J/2

U = ∫dr(1) dr(2) V12(r(1),r(2) )|ψα(r(1))|2 |ψβ(r(2)) |2 -- Hartree term

J = 2∫dr(1) dr(2) V12(r(1),r(2) ) ψα(r(1))ψβ
∗(r(1))ψα

∗(r(2))ψβ(r(2)) > 0 -- Fock term

Heisenberg hamiltonian
Es(t) = Eα + Eβ + U − J/4 − Js1s2, 

ferromagnetic ground state (potential exchange)

2p

He atom



Properties of exchange interactions Properties of exchange interactions 

Hex = - Js1s2

potential exchange

J = 2∫dr(1) dr(2) e2/(|(r(1) - r(2)|ε) ψα (r(1))ψ*
β (r(1))ψα

*(r(2))ψβ (r(2)) 

= 2∑k [4πe2/εk2 ]|∫dr ψα (r)ψ* β (r)eikr|2 > 0

s1

s2

two electrons
in a quantum dot

• ferromagnetic

• short range – determined by overlap of wave functions

(contrary to U)



Transition metals – free atomsTransition metals – free atoms

• Electronic configuration of TM atoms : 3dn4s2

1 ≤≤≤≤ n ≤≤≤≤ 10: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn

• Important role of electron correlation for open d s hells
- intra site correlation energy U = En+1 – En

for n = 5, U ≈≈≈≈ 15 eV

- intra-site exchange interaction: ferromagnetic
Hund’s rule: S the highest possible
for n = 5, ES=3/2 −−−− ES=5/2 ≈≈≈≈ 2 eV

- TM atoms, 3d n4s1, e.g., Mn :

ES=2 −−−− ES=3 ≈≈≈≈ 1.2 eV ����Js-d ≈≈≈≈ 0.4 eV ferromagnetic
[H = -JsdsS]

despite of screening and hybridization these 
effects survive in solids 3d5

4s1



Potential s-d exchange interactionPotential s-d exchange interaction

in metals/semiconductors with delocalised s band and localised d spins
Jsd only slightly reduced by screening:

Hsd = − ∑iJsds(r i)Si

� exchange splitting of c. b., e.g., Cd1-xMnxTe

∆ = |xαN0 <Si>|;      αNo ≡ Jsd; N0 – cation concentration

3d5

4s1

for singly ionised Mn atom

J4s-3d = 0.40 eV, J4p-3d = 0.20 eV

or singly ionised Eu atom 

J6s-4f = 0.052 eV, J5d-4f = 0.22 eV



Potential exchange – extended states
Ferromagnetism of late TM



Exchange energy of electron gasExchange energy of electron gas

Eex= ∫dr [g↑↑ (r)-1]e2/εr

Probability (triplet):
Pkk’(r(1),r(2)) = |ϕk(r(1)) ϕk’(r(2)) − ϕk’(r(1)) ϕk(r(2))|2/2

P(y) = ∫dxP(x)δ(y – y(x))

g↑↑(r) =     ∫dr(1)dr(2)δδδδ(r - r (1) - dr(2))××××
∑∑∑∑kk’ < kF{|ϕk(r(1)) ϕk’(r

(2))|2 − ϕk(r(1))ϕk’
*(r(1))ϕk’(r

(2))ϕk
*(r(2))}

ϕk(r) = exp(ikr)/√√√√ V

• exchange energy of electron gas
Eex = - 0.916 Ry/(rs /aB)

g↑↑↑↑↑↑↑↑(r)

r

1

0

pair correlation function



Consequences of fermionic correlation -
metals

Consequences of fermionic correlation -
metals

• Exchange interaction within the electron gas

since the electron with the same spins avoid each other
the energy  of electron-electron repulsion is reduced

⇒ cohesion energy of metals
• kinetic energy of electron gas

Ek = (3/5)EF =  2.2 Ry/(rs /aB)2

• exchange energy of electron gas
Eex = - 0.916 Ry/(rs /aB)

Minimum Etot � rs /aB ≈ 1.6; real metals  2< rs /aB < 6

=> band-gap narrowing in doped semiconductors

∆E [eV] ≈ - e2/εrs = - 1.9 10-8 (p[cm-3])1/3

=> enhancement of tendency towards ferromagnetism
tendency towards ferromagnetism  



Experimental facts on Fe, Co, NiExperimental facts on Fe, Co, Ni

• both s and d electrons contribute to the Fermi sphere

-- no localised spins

� itinerant magnetism

• robust ferromagnetism Tc = 1390 K for Co

Two time honoured models:

-- Bloch model

-- Stoner model



Bloch model of ferromagnetismBloch model of ferromagnetism

• kinetic energy of electron gas

Ek = 2.2 Ry/(rs /aB)2[n↑
5/3 + n↓

5/3]/[2(n/2)5/3]

• exchange energy of electron gas
Eex= ∫dr [g↑↑ (r)-1]e2/εr + ∫dr [g↓↓ (r) -1]e2/εr

Eex = - 0.916 Ry/(rs /aB)[n↑
4/3 + n↓

4/3]/[2(n/2)4/3]

Minimising in respect to n↑ - n↓ at given n = n↑ + n↓

=> ferromagnetism  at rs /aB > 5.4

k

EF



Stoner model of ferromagnetismStoner model of ferromagnetism

• kinetic energy of electron gas

Ek = 2.2 Ry/(rs /aB)2[n↑
5/3 + n↓

5/3]/[2(n/2)5/3]

• exchange energy of electron gas

Eex= ∫dr [g↑↑ (r) – 1]e2/εr + ∫dr [g↓↓ (r) – 1]e2/εr

4πe2/[ε|k1 – k2|2] � I/N0    [screening]; I - a parameter

Eex = – 0.69 Ry/(rs /aB)2I[n↑
2 + n↓

2]/(nN0)

Minimizing in respect to n↑ - n↓ at given n = n↑ + n↓

=> ferromagnetism  at AF = ρ(EF)I/N0 > 1

k

EF



Why these models are not correct?Why these models are not correct?

• theory: higher order terms wash out 
ferromagnetism

• experiment: no ferromagnetism observed

in modulation doped heterostructures



Failure of free electron modelFailure of free electron model

ferromagnetism is not expected in TM metals!

� band structure effects crucial:

• orbital character (s, d)

• multi bands’ effects
-- narrow plus wide band

• s-d exchange coupling

• spin-orbit interaction (magnetic anisotropy)

• ….



Kinetic exchange



Direct exchange interactionsDirect exchange interactions

H12 = − Js1s2 

potential energy depends on spins’ directions

kinetic energy depends on spins’ directions

kinetic exchange

potential exchange



Direct exchange interactionsDirect exchange interactions

Hex = - Js1s2

potential exchange

J = 2∫dr(1) dr(2) V12(r(1),r(2) ) ψa(r(1))ψ*
b(r(1))ψa

*(r(2))ψb(r(2))  > 0

s1 s2Kinetic exchange

J =− 2<ψ1|H |ψ2>|2/U < 0

s1

s2

U

also H2 two electrons in two quantum dots

two electrons in
one quantum dot



Kinetic exchange in metals – Kondo hamiltonianKinetic exchange in metals – Kondo hamiltonian

Lowering of kinetic energy due to 
symmetry allowed hybridization

• quantum hopping of electrons 
to the d level 

[eikr contains all point symmetries]

• quantum hopping of electrons
from the d level to the hole
state

���� Hi = - JsS i (Schriffer-Wolff)
kinetic exchange

|Jkin| > Jpotential<ψk|H |ψd>|2Jkin = − [1/Ed + 1/(U - Ed)]

3d5

3d6

U
EF

Ed

exchange  splitting of the band: ∆ = x| Jkin − Jpotential|<Si>

[in the weak coupling limit – no Kondo screening]



Kinetic exchange in DMSKinetic exchange in DMS

<ψs|H |ψd> = 0

<ψp|H |ψd> ≠ 0

• quantum hopping of electrons 
from the v.b.  to the d level

• quantum hopping of electrons
from the d level to the empty 
v.b. states

|<ψp|H |ψd>|2[1/Ed + 1/(U - Ed)]Jkin ≡ βNo = −

v.b. 3d5

3d6

exchange  splitting of v.b., e.g., Ga1-xMnxAs: ∆ = x|βN0|<S>
[in the weak coupling limit – TM does not bind a hole]

e.g., Mn in CdTe
Fe in GaN



Exchange energy ββββNo in Mn-based DMSExchange energy ββββNo in Mn-based DMS

• Antiferromagnetic
(Kondo-like)

• Magnitude 
increases with 
decreasing lattice 
constant 1

o   photoemission  (Fujimori et al.)
o   exciton splitting  (Twardowski et al.)

GaAs

ββββN
o
 ~  a

o

-3

CdTe
ZnTe

CdSe

CdS

ZnSe

ZnS

ZnO

87654
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Ferromagnetic kinetic exchange in Cr-based DMSFerromagnetic kinetic exchange in Cr-based DMS

|<ψp|H |ψd>|2[1/(U + Ed) − 1/(U + Ed− J) − 1/Ed ] > 0βNo = −

v.b.

3d4

3d5

3d5

Ed

U - J

U

d state in the gap

attention: in thermal equillibrium Cr d electrons neutralize holes but 

ferromagnetic βNo was determined by exciton reflectivity
Mac et al., PRL’93



Double exchange



Zener double exchangeZener double exchange

Mn+3 Mn+4

• two centres with different spin states

• because of intra-centre exchange hopping 
(lowering of kinetic energy) for the same
orientations of two spins � ferro



c.bc.bc.bc.b. (s . (s . (s . (s orbitalsorbitalsorbitalsorbitals))))

d TM bandd TM bandd TM bandd TM band

v.bv.bv.bv.b. (p . (p . (p . (p orbitalsorbitalsorbitalsorbitals))))

E

DOSDOSDOSDOS

• d -states in the gap

• Sr acceptors take electrons from Mn ions

� mixed valence � two spin states

• Ferromagnetic arrangement promots hopping

� Anderson-Mott insulator-to-metal transition at x ≅ 0.2

• narrow band for AFM, wide band for FM

Doped manganites: (La,Sr)MnO 3Doped manganites: (La,Sr) MnO3

Mn+3 Mn+4

TC ≈ 300 K



Indirect exchange interaction 
between localised spins

Overlap of wave functions necessary for the exchange interaction
� weak for

-- diluted spins
-- spin separated by, e.g, anions

but … sp-d interaction Jsp-d≡ I can help!

Localised spin polarises band electrons �

spin polarised band electrons polarise other localised spins



s-d Zener model



• METALS
(heavily doped 

semiconductors)

k

EF ∆ = x|I|<S>

long range, ferromagnetic

Zener exchange mediated by free carriers
redistribution of carriers between spin subbands low ers energy

c.b.c.b.c.b.c.b.

v.b.v.b.v.b.v.b.

d d d d TM TM TM TM bandbandbandband

s-d Zener models-d Zener model



Landau free energy functional of carriersLandau free energy functional of carriers

k

EF

∆∆∆∆

for ∆, kT << EF

0 0

2

2

0

1 1
( ) ( ) ( ) ( )

2 2

1 1
( ) ( ) ( ) ( )

8 8F F
B

dEE E f E dEE E f E

IM
dEE E f E E E

g

ρ ρ

ρ ρ ρ
µ

∞ ∞

↓ ↑

∞

= + −

 
− = ∆ =  

 

∫ ∫

∫

0 0

21 1
( ) ( ) ( ) ( )

8 8F FdEE E f E E Eρ ρ ρ− = ∆ =−
2

1 1
( ) ( ) ( ) ( )

8 8F F
B

IM
dEE E f E E E

g
ρ ρ ρ

µ
 

− = ∆ =  
 

−

Ground state always FM if no competing AF interactions

Fcarriers[M]



MeanMeanMeanMean----field field field field ZenerZenerZenerZener modelmodelmodelmodelMeanMeanMeanMean----field field field field ZenerZenerZenerZener modelmodelmodelmodel

Which form of magnetization minimizes F[M(r)] ?

F = Fcarriers[M(r )] + FSpins[M(r) ]

Fcarriers<= VCA, Mol.F.A, kp, empirical tight-binding

Fspins<= from M(H) for undoped DMS

M(r) ≠ 0 for H= 0 at T < TC

if M(r) uniform => ferromagnetic order

otherwise => modulated magnetic structure



How to describe valence band structure?How to describe valence band structure?

Cross-section of the Fermi surface
M || [100]

Essential features:
• spin-orbit coupling
• anisotropy
• multiband character

(Ga,Mn)As

EF



Zener/RKKY MF model of p-type DMSZener/RKKY MF model of p-type DMS

Curie temperature  TC = TCW = TF – TAF          superexchange

TF = S(S+1)xeffNoAFρ(s)(EF)β2/12Lc
d-3

AF > 1 Stoner enhancement factor 

(AF= 1 if no carrier-carrier interaction)

ρ(s)(EF) ~ m*kF
d-2

(if no spin-orbit coupling, parabolic band)

Lc – quantum well width (d = 2), wire cross section (d = 1)

=> TC ~ 50 times greater for the holes
large m*
large β T.D. et al. PRB’97,’01,‘02, Science ’00

Competition between entropy, AF interactions, and 
lowering of carrier energy owing to spin-splitting
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Magnetoresistance hysteresis
n-Zn1-xMnxO:Al, x = 0.03

Magnetoresistance hysteresis
n-Zn1-xMnxO:Al, x = 0.03

∆R
xx

(Ω
)

Magnetic field (T) Temperature (K)

∆
(m

T
)

50mK

60mK

75mK

100mK

125mK

150mK

200mK

TC = 160 mK

∆

M. Sawicki, ..., M. Kawasaki, T.D., ICPS’00



Curie temperature in p-Ga 1-xMnxAs
theory and experiment

Curie temperature in p-Ga 1-xMnxAs
theory and experiment

Warsaw + Nottingham’03
samples: T. Foxon et al.
expl. M. Sawicki i K. Wu
theory: Zener model, T.D. et al. 
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• TC independent of hole 
concentration p

• TC inversely proportional
to LW

• spontaneous splitting 
proportional to p

Effect of dimensionality 
-- magnetic quantum wells (theory)

Effect of dimensionality 
-- magnetic quantum wells (theory)
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Modulation doped (Cd,Mn)Te QWModulation doped (Cd,Mn)Te QW

(Cd,Mg)Te:N (Cd,Mg)Te:N
(Cd,Mn)Te

J. Cibert et al. (Grenoble)



Ferromagnetic temperature in
2D p-Cd1-xMnxTe QW and 3D Zn 1-xMnxTe:N
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Ferromagnetic temperature in 
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Effects of confinement 
magnetic quantum wires - expectations
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RKKY model



RKKY – metals/doped semiconductorsRKKY – metals/doped semiconductors

� Hij = -J(Ri –Rj)SiSj

How energy of carriers 

depends on relative orientation 

of two spins Si and Sj in the 

presence of Hsp-d = -I(r –Ri)sSi



Spin polarisation of free carriers induced by a loca lised spin :

• long range

• sign oscillates
with kFRij

• FM at small
distances
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Hij = -J(Ri –Rj)SiSj
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Spin density oscillationsSpin density oscillations

SP-STM
Co on Cu(111)

R. Wiesendanger et al., PRL’04



Magnetic order induced by RKKYMagnetic order induced by RKKY

• MFA valid when n < xN0  (semiconductors)
interaction merely FM

• MFA not valid when n > xN0

both FM and AFM important � spin glass

Hij = -J(Ri –Rj)SiSj

in the MFA TC (RKKY) = TC(s-d Zener)



Blomberg-Rowland and superexchange



RKKY and Blomberg-Rowland mechanismRKKY and Blomberg-Rowland mechanism

spin 
polarisation of
valence
electrons

spin 
polarisation
of carriers

4th order process in hybridisation <ψk|H |ψd>



Example: hopping to d-orbitalsExample: hopping to d-orbitals



SuperexchangeSuperexchange

• Derivation of J(Ri –Rj) in spin hamiltonian Hij = - J(Ri –Rj)SiSj

taking systematically into account hybridisation terms 

<ψk|H |ψd> up to at least 4th order

• merely AFM, if FM – small value – Goodenogh-Kanamori rules
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