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The vocabulary of magnetism has no strict rules, but for most people working in the field 
use the term magnetic materials to mean materials where spontaneous magnetic ordering 
takes place. The stability of the ordered state is due to the exchange interaction; at high 
temperature thermal agitation prevents ordering. Accordingly, the two important aspects 
in the study of magnetic order concern the nature of the order, i.e. the ground-state 
arrangement of the magnetic moments, and the process of ordering itself, that is, the 
phase transition and critical behaviour near the transition temperature. In fact, models of 
magnetic systems and experiments on materials well described by such models have been 
central in the study of critical phenomena. This lecture will be about the types of order 
and the models for the interactions that bring about the ordered states.

The simple classification of ordered states into ferromgnets, antiferromagnets and 
ferrimagnets cannot do justice to the rich variety of possible ordered patterns of three-
dimensional vectors at the sites of all crystal lattices possible in three dimensions. To 
begin with, we associate these magnets with collinear structures,  ,  
and  ,  whereas the angle between neighbouring magnetic moments is not 
limited to zero and π and the orientation of moments with respect to the crystal axes is 
also an important variable, which can indeed vary with temperature. Apart from the 
exchange interaction, magneto crystalline anisotropy is also an important factor in 
determining the nature of the ordered state.

In the rare-earth – transition-metal ferromagnets, the anisotropy energy of the rare earth 
component is much larger than that of the transition metal, because the spin-orbit 
coupling is an order of magnitude stronger. As the orientations preferred by these 
anisotropy energies can be different and so are their temperature dependences, the overall 
effect is also temperature dependent, so that the orientation of the net ferromagnetic 
moment changes with temperature.

Similar effects in antiferromagnets are not conspicuous, because there is no net 
magnetisation. However, some antiferromagnets, most notably α-Fe2O3, MnCO3, CoCO3 

and CrF3, show a small magnetic moment (“weak ferromagnets”), which signals a slight 
noncollinearity of the oppositely oriented moments, due to an anisotropic superexchange 
interaction. The orientation of magnetic moments in antiferromagnets and ferrimagnets 
can only be measured by means of neutron diffraction.

The concept of sublattice magnetisation is an important tool in the description of 
antiferromagnetic and ferrimagnetic ordering. Two sublattices will suffice for the 
simplest antiferromagnets and the ferrimagnets where the two sublattices are occupied by 
different ions, carrying moments of different magnitude. Most of the common 
ferrimagnets are more complicated and need a model with many superlattices. For 
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instance, magnetite, Fe3O4, can be looked upon as being built up of two sublattices 
occupied by Fe3+ ions whose magnetic moments cancel each other and a sublattice of Fe2+ 

ions, which provide the measured magnetisation of approximately 4 Bohr magnetons per 
formula unit. It should be noted that superlattices are not suitable for all 
antiferromagnetic structures (ordered structures with zero net magnetisation). In spiral 
structures, which are quite common with rare-earth metals, the magnetic moments in a 
crystallographic plane are rotated by a given angle with respect to those in a neighbouring 
plane. Clearly, if this angle is not π/2, the structure is not collinear and if it is not a 
rational fraction of 2π, each plane would have to be defined as a distinct sublattice, which 
is not very helpful.

Magnetic ordering always breaks at least one symmetry of the crystal, the invariance 
under time inversion. Invariance under rotations around axes not coinciding with the 
ordered moments also disappears. This symmetry braking is not related to asymmetries in 
the spin Hamiltonian. Spin Hamiltonians are constructed to describe the behaviour of the 
degrees of freedom of atoms or ions occupying lattice sites. Therefore, they have the full 
symmetry of the lattice. For instance, in a cubic lattice the bilinear term describing the 
interaction between magnetic moments must be of the Heisenberg form,
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Here only nearest-neighbour interaction is included. Nearest neighbours are equivalent in 
a cubic lattice, hence the unique exchange parameter J. In a tetragonal lattice, z is not 
equivalent with x and  y, the interaction Hamiltonian will include two exchange 
parameters and have the form
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Evidently, anisotropic exchange is allowed. Disregarding single-ion magneto crystalline 
anisotropy, if ,1/  JJ  the latter Hamiltonian describes a magnet with easy-axis 
anisotropy, if ,1/  JJ  with easy-plane anisotropy. In the case of extreme anisotropy we 
find the Hamiltonians which define two import models:
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As the Ising and XY models exclude some components of the spin vectors, the entities 
they describe can be looked upon as one- and two-dimensional moments, respectively. 
However, this does not automatically make them low-dimensional models. The 
dimensionality is determined by the meaning of the indices i and j. Those indicate sites in 
a lattice of well defined dimension. Thus one can study three-dimensional Ising models 
or one-dimensional XY models; there is no contradiction in terms here.
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