

Preparation and characterisation

Julia Lyubina

Institute for Metallic Materials, IFW Dresden, Germany

Characterisation

x-ray diffraction imaging techniques (SEM, AFM, MFM) differential scanning calorimetry

Preparation (included in Nanostructured Hard Magnets)

sintering hydrogen-assisted methods (HD, HDDR) melt spinning mechanical alloying hot deformation

Characterisation methods

Characterisation methods

-X-ray diffraction (XRD)

Crystalline solid screen

------ Spot from incident beam

Spots from diffracted X-rays

> Photographic plate

X-ray diffraction (XRD)

$$2d_{hkl}\sin\theta = n\lambda$$

Constructive interference \rightarrow the path length difference = whole number of λ

Properties:

$$\checkmark \sin \theta = 1 \implies 2d_{hkl} = n\lambda \implies d_{hkl}^{min} = \lambda/2$$

 \checkmark Diffraction pattern is obtained for

 θ = var, λ = const (powder diffraction, Debye-Scherrer, rotation, Kossel methods)

 θ = const, λ = var (Laue method)

 \checkmark Positions of reflections are determined by the respective set of cell dimensions

X-ray diffraction (XRD)

Diffraction \rightarrow a crystal placed in an incident beam of hard x-rays reflects this beam in many directions

http://itl.chem.ufl.edu/2041_f97/matter/FG11_039.GIF

X-ray diffraction (XRD)

http://cristallo.epfl.ch/flash/crystal_web_6_english.swf

Structure factor: chemical ordering

Phase identification

Qualitative \rightarrow comparison of the observed data with interplanar spacings *d* and relative intensities *I* of known phases

Quantitative \rightarrow

Problem: overlapping diffraction lines!

Rietveld refinement

Rietveld refinement \rightarrow a whole-pattern fitting with parameters of a model function depending on the crystallographic structure, instrument features and numerical parameters

Calculated intensity
$$y_{ci} = y_{bi} + \sum_{p} s_{p} \sum_{k} I_{hkl} \phi(2\theta_{i} - 2\theta_{k})$$

background \downarrow profile function
scale factor ~ vol. %
Aim \rightarrow find a set of parameters (ξ)

=0

Aim \rightarrow find a set of parameters (ξ describing the observed pattern as good as possible

$$U(\xi) = \sum_{i} \frac{1}{y_{i}} (y_{i} - y_{ci})^{2} \qquad \frac{\partial U}{\partial \xi}$$

 ξ : vol. %, lattice and profile parameters, site occupation, preferred orientation...

H. M. Rietveld, J. Appl. Cryst. 2 (1969) 65.

Even overlapping peaks contribute information about the structure!

Refined (obtained) parameters

global: background, sample shift

structural: phase fraction, lattice constants, profile parameters (\rightarrow grain size/strain)

Phase identification: minority phases

Severe overlap of lines \rightarrow close cell dimensions line broadening due to nanocrystallinity

Lyubina et al., JAP 95 (2004) 7474.

Line broadening: grain size and lattice strain $2\theta_2$ Observed diffraction profile $h(2\theta)$ is $h(2\theta) = \int f(y)g(2\theta - y)dy$ a convolution of the physical $f(2\theta) \rightarrow \theta$ and instrumental $g(2\theta)$ profiles $2\theta_1$ $f_{\max_{f(y)}}$ Integral breadth $\int \phi(2\theta) \mathrm{d}(2\theta)$ *h*(2θ) $2\theta_2$ 2θ У *g*(2θ-у)

Separate $f(2\theta)$ and $g(2\theta)$ using e.g. integral breadth method

Line broadening: grain size and lattice strain

Separation of $f(2\theta)$ and $g(2\theta)$ using integral breadth method

I) Measurement of a a Standard Reference Material SRM (e.g. LaB₆)

II) Select the shape of the peak (e.g. pseudo-Voigt) IIIa) Interpolate the FWHM of the SRM | IIIb) De

$$\Gamma_{IRF}^{2} = U \tan^{2} \theta + V \tan \theta + W$$

IVa) Correct

$$\Gamma_{sample} = \sqrt{\Gamma_{measured}^2 - \Gamma_{IRF}^2}$$

IIIb) Decompose it into Lorenzian and Gaussian and correct the integral breadths as

$$\beta_{\rm L}^f = \beta_{\rm L}^h - \beta_{\rm L}^g$$

$$(\beta_{\rm G}^{f})^{2} = (\beta_{\rm G}^{h})^{2} - (\beta_{\rm G}^{g})^{2}$$

"Average size-strain" method

Diffraction from amorphous materials

Amorphous materials \rightarrow the atoms has permanent neighbours, but there is no repeating structure (short range order).

Ball-milled Nd-Fe-B

Diffraction from amorphous materials

Properties of neutrons

- Behave either as particels or as waves
- Wavelength varies depending on the source temp.: hot (0.2-1 Å), thermal (1-4 Å), cold (3-30 Å)

interaction with the nucleus via strong nuclear force \rightarrow crystal structure determination from diffraction experiments

Magnetic scattering

The neutron possesses a spin \rightarrow can be scattered from variations in magnetic field via the electromagnetic interaction \rightarrow magn. structure probe

http://www.ill.fr/index_ill.html

Structure factor

$$|\mathbf{F}_{hkl}|^2 = \left[\sum_{j=1}^{N} f_j \, e^{2\pi i (hx_j + ky_j + lz_j)}\right]^2 \sim \mathbf{I}_{int}$$

X-rays

 $f_{\rm i}$ - atomic form factor

X-rays interact with e^{-} cloud $\Rightarrow f_{i} \sim z$ Neutrons

 $f_{\rm i}(b_{\rm i})$ - neutron coherent scattering length

Neutrons interact with the nucleus \Rightarrow

 $b_j = \forall$

ightarrow Weak absorption \Rightarrow large penetration depth

Or Possibility to locate light atoms or distinguish neighbouring atoms in the periodic table

් Magnetic structure probe

Example: L1₀ FePt

$$z_{\text{Pt}} (= 78) \gg z_{\text{Fe}} (= 26)$$
$$\Rightarrow f_{\text{Pt}} \gg f_{\text{Fe}} \text{ BUT } b_{\text{Pt}} \approx b_{\text{Fe}}$$

Site occupation (and order parameter S) determination is possible with x-rays, not with neutrons

 $F_{ss} = 2S(f_{Pt} - f_{Fe})$ h+k even

Magnetic structure by neutron diffraction

Neutron coherent scattering length $b_{Pt} \approx b_{Fe}$

- Magnetic reflections evolve on cooling around 725 K
- Int. intensity ~ (magnetic structure factor)² ~ (projection of m $\perp \mathbf{k}$)²

APL 89 (2006) 032506

Characterisation methods

Scanning electron microscopy (SEM)

Electron microscopy: interaction of e⁻ with matter

Scanning electron microscopy (SEM)

Resolution depends on spot size. Resolution in SE better than in BSE ~ several nanometers!

Sr-Fe-O, courtesy of K. Khlopkov

Secondary electrons (SE)

- low energy ($\sim 10 \text{ eV}$)
- surface topographical image
- production is mostly independent of z

Backscattered electrons (BSE)

- high energy (> 50 eV)
- large width of escape depth
- heavy elements produce more BSE
 - \Rightarrow atomic number contrast

SEM: SE and BSE contrast

Secondary electrons (SE)

Backscattered electrons (BSE)

Sintered Nd-Fe-B magnet, courtesy of K. Khlopkov

Surface topography image

Some atomic contrast: BSE produce SE \Rightarrow heavier elements tend to produce more SE

Compositional contrast

The higher the atomic number z, the brighter is the contrast

Texture analysis

V. Randle and O. Engler, Introduction to texture analysis, 2000.

Texture analysis: XRD

Usual way \rightarrow pole figure measurements (the statistical directional distribution of poles to a specific lattice plane in a polycrystalline aggregate).

Y.R. Wang et al., JAP 81 (1997)

A detector is positioned on the centre of a diffraction peak *hkl* and the sample is rotated $I_{hkl} \sim$ number of lattice planes

Problems:

- time consuming (need several reflections for ODF construction)
- complicated in case of low symmetry, peak overlap

Texture analysis: XRD/Rietveld

Texture analysis: EBSD

 $Microtexture \rightarrow$ orientation statistics of individual grains and their spatial location

Texture analysis: EBSD

 $Microtexture \rightarrow$ orientation statistics of individual grains and their spatial location

Courtesy of N. Scheerbaum

 SEMMar #378.832
 -20µm

p=0.1 µm. EideS74408

Black lines: (110) 87°

Resolution: $1 \ \mu m$

Texture analysis: EBSD

Orientation map from the surface of an isotropic Nd-Fe-B magnet

Resolution here \approx 50 nm

Possible resolution 10-20 nm!

Misorientation angle distribution

(probability of each of the possible grain orientations with respect to the sample coordinates)

ODF (x-rays/neutrons) → averaged over many grains

Characterisation methods

Atomic force microscopy (AFM) and

magnetic force microscopy (MFM)

AFM

Forces measured: mechanical contact, Van der Waals, chemical bonding, electrostatic, magnetic...

Operation modes:

Static (contact and non-contact)

Cantilever is continuously contacting (surface damage) or is held above the sample surface (low resolution)

Dynamic (low amplitude and tapping) the cantilever is oscillated close to its resonance frequency; amplitude, phase and resonance frequency is modified by tip-sample interaction

Advantages (\Leftrightarrow SEM)

- true 3D surface profile
- non-conducting samples
- can work under ambient conditions (biology etc.)
- atomic resolution under UHV

Disadvantages (\Leftrightarrow SEM)

- maximum scanning area ~ 150 \times 150 μ m
- slow scanning

MFM

Tapping/Lift mode \rightarrow magnetic and topographic data are separated by scanning twice for each scan line

Magnetic Fields

1st scan *tapping mode* AFM (sample topography) → close to the sample surface with a constant amplitude of 5-50 nm; bump/*depression*: less/*more* room to oscillate – amplitude decreases/increases

 2^{nd} scan *lift mode* MFM (magnetic force gradient) \rightarrow follows the recorded topography, but at an increased scan height to avoid the van der Waals forces that provided the topographic data

MFM

Imaging high anisotropy materials

- high coercivity tips are required (e.g. CoCr coating $H_c \approx 4$ kOe)
- for high resolution (limited to \approx 50 nm due to dipole-dipole inter.)
 - small tip radius
 - lift height: 100 nm (restricted by large magn. forces)

nominal tip radius of curvature: 40-65 nm

Characterisation methods

Differential scanning calorimetry (DSC)

Thermal analysis: definitions

Differential thermal analysis (DTA) \rightarrow the temperature difference between a sample and a reference, ΔT , is measured as both are subjected to identical heat treatments

Calorimeter \rightarrow measures heat absorbed or evolved during heating or cooling

Differential calorimeter \rightarrow measures heat ... relative to a reference

Differential scanning calorimeter (DSC) \rightarrow does the above + ramps the temp. up or down

$$\Delta \mathsf{T} = \mathsf{T}_{\mathsf{S}} - \mathsf{T}_{\mathsf{R}}$$

"Calorimetric" DTA or heat-flux DSC

The sample and the reference are maintained at the **same temp.!**

DSC: measurement principles

Heat-flux DSC

Power-compensated DSC

Basis: a homogeneous temperature field in the furnace

Basis: the system is maintained at a "thermal null" state at all times

Heat absorption or loss due to a transition in the sample, difference in $c_{\rm p}$ between the reference and sample

 \Rightarrow temperature gradients at the thermal resistances of the sensor

 \Rightarrow power (energy) is applied to or removed from the calorimeter to compensate for the sample energy

Output signal

Characteristics of a DSC curve

Zero line: empty instrument or empty crucibles

Baseline: connects the curve before and after the peak

Peak temperatures:

initial T_i ; onset T_o ; peak maximum T_m ; completion T_e ; final T_f

M.E. Brown, Introduction to thermal analysis (Kluwer Academic, 2001).

Characteristics of a DSC curve

Zero line: empty instrument or empty crucibles

Baseline: connects the curve before and after the peak

Peak temperatures:

initial T_{i} ; onset T_{o} ; peak maximum T_{m} ; completion T_{e} ; final T_{f}

Enthalpy change: $\Delta H = A \times K/m$

A – area, **m** – sample mass, **K** – calibration factor (A $\Leftrightarrow \Delta H$ by melting of a pure metal)

Heat capacity
$$\mathbf{c_p}$$
: $\Delta \mathbf{H} = \int_{T_1}^{T_2} \mathbf{c_p} \, \mathbf{dT}$

M.E. Brown, Introduction to thermal analysis (Kluwer Academic, 2001).

What can be measured in DSC?

Exothermic events crystallisation solid-solid transitions decomposition ordering chemical reactions

Endothermic events melting sublimation solid-solid transitions disordering chemical reactions

2nd order-type transitions (c_p change) glass transition Curie point

What can be measured in DSC?

 $\begin{array}{l} \mbox{Exothermic signal} \rightarrow \mbox{healing out of} \\ \mbox{crystal defects} \end{array}$

Interpretation of DSC data \rightarrow use of additional techniques! XRD, microscopy, spectroscopy...

Effect of heating rate

Kinetically controlled transitions (diffusion, crystallisation, ordering etc.) shift to higher temp. with increasing heating rate

The total heat flow increases linearly with heating rate due to c_p of the sample

↑ heating rate ↑ sensitivity; ↓ heating rate ↑ resolution DSC /(mW/mg) 5 K/min T_m ↓ exo 0 -0.2 10 K/min -0.4 -0.6 20 K/min -0.8 -1.0 -1.2 -1.4 40 K/min -1.6 500 200 250 300 350 400 450 Temperature /°C

For obtaining values close to true thermodynamic slow heating rates (1-5 K/min) should be used

Kinetics

Isothermal mode

 $d\alpha/dt = A \exp(-E_{\rm a}/k_{\rm B}T)f(\alpha)$

Temperature T = const

Procedure:

- measure transformed fraction $\alpha(t)$
- plot $d\alpha/dt = f(t \text{ or } \alpha)$
- determine linearity of $(d\alpha/dt)$ vs. $f(\alpha)$

 $f(\alpha)$ - conversion function used for the interpretation of reaction mechanism (KJMA kinetics etc.)

- $d\alpha/dt = Kf(\alpha) \rightarrow K$ used in Arrhenius plot to calculate activation energy E_a and Arrhenius parameter A Dynamic (nonisothermal) mode

$$\ln(T_{\rm m}^2 / \beta) = E_{\rm a} / k_{\rm B} T_{\rm m}$$

Heating rate $\beta = d T/dt = const$

Scr. Mater. 53 (2005) 469; JAP 100 (2006) 94308.

Hyper DSC

- a modification of the power-compensated DSC
- very fast scans up to 500 K/min (helps mimic process conditions)

StepScan DSC

- modulated temperature power-compensated DSC (short interval heating and isothermal-hold steps)

- separates reversible and irreversible effects
- more accurate heat-capacity results since C_p measurements are generated over short-interval temperature segments

Total heat flow $dQ/dt = C_p \cdot dT/dt + f(t,T) \rightarrow \text{non-reversing signal}$ (kinetic component)

reversing signal heat flow resulting from temp. modulation (c_p component)

Simultaneous analysis techniques: DSC-TG, DSC-XRD...

Questions?

определить невозможно.

 $I_{coh}(Q)$ — интенсивность рассеянного излучения, которую можно измерить экспериментально. Если определить интерференционную функцию S(Q) как

$$S(Q) = I_{coh}(Q)/N b^{2},$$
 (3.17)

то из (3.16) можно получить

$$S(Q) = 1 + \int_{0}^{\infty} 4\pi r^{2} \rho_{0} \{g(r) - 1\} \frac{\sin Q r}{Qr} dr.$$
(3.18)

терференционную функцию S(Q) с парной функцией распределения g(r). Функцию S(Q) часто также называют структурным фактором. Реально сначала определяют функцию S(Q), по которой измеряемую непосредственно в дифракционных экспериментах ин-Равенство (3.18) является основной формулой, связывающей можно затем различным образом найти g(r):

$$g(r) = 1 + \frac{1}{2\pi^2} \int_{0}^{\infty} \{S(Q) - 1\} Q \sin Q r dr.$$
 (3.19)

Представим атом, находящийся в некоторой начальной точке, сферой радиусом r, ведя отсчет от ее геометрического центра. Распределение плотности атомов, находящихся на внешней поверхности этой сферы, определяется как функция радиального распределения (Φ PP) и равно $4\pi r^2 \rho_0 g(r)$.