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1. Introduction 
Neutrons, particularly neutron scattering techniques, are fundamentally 

important for the study of magnetic structures and dynamics.  Indeed, one of the 
definitions for an ordered magnetic structure is that neutron diffraction experiments 
must reveal magnetic Bragg peaks, and neutron scattering is currently the only 
technique capable of making a complete study of magnetic excitations.  Conversely, 
the need to understand the physics of magnetism is probably the greatest driving force 
behind the increasing demand for neutron sources, with developments in diverse 
fields spanning spintronics to superconductivity and quantum critical points.  Only the 
simplest magnetic problems can be solved without some information from neutrons. 

The success of neutron techniques is due to the strength of the interaction 
between the magnetic moment of the neutron, given by its spin angular momentum, 
with the magnetic induction of a sample.  This interaction is similar in magnitude to 
that between the neutron and a nucleus, thus the magnetic signal can often be clearly 
distinguished from nuclear structure and dynamics. 

The two-hour lecture will cover the basics of neutron scattering, starting with 
the wave equation and developing to the first Born Approximation.  A discussion, 
with examples, of the application of neutron scattering to problems of magnetic 
structure (associated with elastic scattering) and dynamics (inelastic scattering) will 
follow, with emphasis on the extra information that can be determined with polarized 
neutrons.  A brief introduction to the rapidly expanding field of experiments with 
neutron dynamical scattering will be made.  Finally, mention will be made of 
spherical neutron polarimetry, which enables the well known ‘phase problem’, 
common to all scattering techniques, to be overcome.  

2. The Born Approximation 

The theory behind all the techniques that use neutrons to probe magnetic 
properties starts with solving the wave equation for the neutron/sample ensemble: 

  
− h2 2M( )∇2 + ˆ V r( )[ ]ψ = Eψ  .    (1) 

For scattering experiments, the probability of scattering, or cross-section, can be 
derived by solving the wave equation and finding the expectation values for E. 

The interaction between the neutron and the sample is generally weak, so 
equation (1) is often solved by first-order perturbation theory.  If the neutron is 
assumed to be a plane wave, the probability of it scattering in to a certain solid angle 
with a certain energy change, d2σ dΩ⋅ dE( ), comes from Fermi’s Golden Rule: 
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The expression d2σ dΩ⋅ dE( ) is known as the partial cross-section for scattering.  
Eq. (2) shows that the cross-section depends upon the Fourier transform of the 
scattering potential over all positions in the sample, thus a Fourier analysis of an 
experiment can reveal all the structural and dynamic properties determined by ˆ V r( ). 

The two assumptions necessary for the derivation of eq. (2) make up the first 
Born Approximation, and the majority of all neutron scattering experiments are 
interpreted from theory developed from this equation. 

2.1 Magnetic scattering 

The potential energy operator, ˆ V r( ), sometimes known as the pseudo-
potential, describes the interaction of the neutron with the sample.  It can be broken 
up in to two parts: 

ˆ V r( )= Vn r( )+ Vm r( ) .      (3) 

The second term in eq. (3), Vm(r), describes the interaction of the neutron with the 
magnetic induction, B(r), and may be written: 

Vm r( )= −γµN ˆ σ ⋅ B r( ) .       (4) 

where ˆ σ  is the Pauli operator defining the neutron spin.  The magnetic induction 
incorporates all the magnetic and electromagnetic properties in and around the 
sample. Magnetism due to unpaired electrons, domain walls, induction, external 
fields, and local circuits are all measurable with neutron scattering, although very 
different instruments are often needed to probe different length and energy scales. 

The interaction of the neutron with the nucleus, Vn(r), may be written: 

  
Vn r( )=

2πh2

mn

b + Bˆ I ⋅ ˆ σ ( )δ r( ) ,     (5) 

where b is defined as the nuclear scattering length, Bˆ I  is the nuclear spin.  While 
rarely investigated, it is possible to use neutrons to measure magnetic properties and 
correlations between nuclei, which are modulated by the nuclear spin. 

 The cross-section is proportional to components of the magnetization in the 
sample.  Following from the laws of electrodynamics, and in the limit that 
ˆ V r( )= Vm r( ), eq. (2) may be written: 
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where M⊥ Q( ) is the Fourier transform of the components of the magnetization at 
positions r in the sample that are perpendicular to the momentum transfer of the 
neutron beam, Q.   

The spatial distribution of the magnetization must be accounted for in the 
Fourier-transformed M⊥ Q( ).  Accounting for the spatial distribution gives rise to a 
modulation of the intensity of the magnetic scattering as a function of Q, known as 
the magnetic form factor.  No form factor is observed for nuclear scattering – the 
nucleus is assumed to be point-like, as shown by the delta function in eq. (5). 
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Most neutron scattering experiments are carried out with a random orientation 
of the neutron spin relative to the sample and the instrument.  Further information can 
be obtained if the neutron beam is polarized, that is, the incident neutron spins all 
have the same direction.  The cross-section then becomes a function of the change in 
the neutron direction, energy and moment direction.  Polarized neutron experiments 
can be used for the separation of magnetic and nuclear scattering, for the 
unambiguous determination of complex magnetic structures, and for the measurement 
of the direction of the magnetization inside a sample.  Most measurements with 
polarized neutrons constrain the initial and final neutron spin directions to be co-
linear, either parallel (+) or antiparallel (–) to a given direction.  In this case the 
pseudopotential can be split in to four possibilities depending on the neutron spin 
orientation before and after scattering, and may be written: 

  

U s ′ s = ′ s ˆ V s ,

U ±± = b ± BIz m γr0M⊥z,

U ±m = −γr0 M⊥x ± iM⊥y( )+ B Ix ± iIy( ).
    (7) 

The subscripts x, y, and z are here defined such that z is the direction of the initial 
neutron polarization.  The polarization dependent cross-sections are then derived from 
eqs. (2) and (7) and are a function of the polarization orientation relative to Q. 

2.2 Elastic scattering 

Neutron elastic scattering, or diffraction, is used to determine magnetic 
structures, both local and long-ranged.  In the elastic limit, eq. (2) may be written: 
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where the brackets show that all the relevant averages have been made.   

The first term in eq (8) is due to the mean structure of the sample and gives 
rise to Bragg scattering. Complicated magnetic structures will have magnetic Bragg 
peaks that can be indexed and analysed using crystallographic techniques.  Proof of 
the existence of antiferromagnetism, double- and triple-Q structures, incommensurate 
and helical magnetic structures and the measurement of magnetic transition 
temperatures are feasible with elastic neutron scattering.   

2.3 Polarized elastic scattering 

While more complicated and lengthy in execution, polarized neutron 
diffraction is often essential.  Separation of magnetic from nuclear scattering is useful 
for the measurement of ferromagnets and single-Q structures.  Polarized neutron 
measurements of Bragg peaks determine magnetic form factors, being the Fourier 
transform of the unpaired electron density in a unit cell.  Sometimes measurements 
with unpolarized neutrons will not be able to distinguish between models for magnetic 
structures.  Moment directional components can be measured with polarized neutrons, 
which can determine the best magnetic model.  A very important application of 
polarized neutron diffraction is for the measurement of short-range order. 

The second term in eq. (8) is depends on the Fourier transform of a short-range 
order correlation function, z(r).  Knowing the behaviour of magnetic short-range 
order is vital for the understanding of amorphous magnetism, spin-glasses, and 
magnetic frustration.  Scattering from short-range order will be broad and diffuse, 
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between the Bragg peaks, and a mixture of magnetic and nuclear scattering, often in 
roughly equal magnitudes.  It is necessary to use neutron polarization analysis to 
separate the magnetic from the nuclear scattering. 

2.4 Inelastic scattering 

Neutron scattering is currently the only technique capable of measuring 
magnetic dynamics of all frequencies and momenta in a sample.  If the sample has 
only one type of magnetic atom, eq. (6) can be rewritten: 

d2σ
dΩ⋅ dE

=
′ k 

k
Nf 2 Q( ) γr0µ⊥( )2 S Q,ω( ),     (9) 

where µ⊥ is the component, perpendicular to Q, of the moment per atom, f(Q) is the 
magnetic form factor,  and S(Q,ω) is the Fourier transform of the magnetic positions 
and vibrations in the sample and is known as the scattering function.  Measurement of 
S(Q,ω) covers the physics of the magnetic properties of the sample, whether it be due 
to magnons (quantized, dispersive excitations), crystal fields (quantized, non-
dispersive), cluster dynamics or amorphous structures (frequently overdamped, non-
quantized), impurities or paramagnetism (quasielastic).  Neutron inelastic scattering is 
also crucial for the study of magnetic phase transitions, with measurements of critical 
phenomena requiring either the measurement of soft modes, or with integration over 
all inelastic scattering.  

2.5 Polarized inelastic scattering 

 While magnetic elastic scattering, and in particular Bragg diffraction, is often 
well-localised and relatively easy to separate without the need for polarized neutrons, 
the scattering function, S(Q,ω), generally represents surfaces or diffuse features in the 
(Q,ω) landscape.  Magnetic excitations often mix and interact with nuclear 
excitations, giving rise to macroscopic features like magnetostriction, 
superconductivity, and the INVAR effect.  Measurements with polarized neutrons are 
frequently used to separate magnetic from nuclear scattering. 

3. Dynamical scattering 
The first Born approximation will fail if the interaction between the neutron 

and the sample cannot be described by first-order perturbation theory, or if the 
neutron cannot be described by a plane wave function.  Both cases hold when 
scattering from a surface with very small scattering angles, where the phenomena of 
refraction and total reflection may be observed.  Neutrons will still interact with the 
magnetic properties of the sample, however the interaction now becomes dependent 
on the wavelength and the energy of the neutron.  A more advanced theory, known as 
a dynamical theory, is now needed to describe the observed scattering. 

 Dynamical scattering for neutrons has, to date, been limited to elastic 
scattering.  It assumes that the incident wave function is still well described by plane 
waves, and uses Fresnel theory to calculate the changes in the wave functions at 
interfaces.  Fresnel theory requires an expression for the refractive index of a material, 
n, which, for neutrons with wavelength λ, is given by the equation: 

 n =1−
Nλ2

2π
ˆ V − i Nλ

4π
σ a λ( ).     (10) 

The absorption cross-section, σa(λ), is normally very small and is often neglected. 
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3.1 Reflectivity 

If the angle that the incident beam subtends to the mean surface is equal to the 
angle of the scattered beam, the ratio of the scattered to the incident intensity is called 
the reflectivity.  The reflectivity can be modelled by matching boundary conditions for 
refracted and reflected waves at interfaces, and the measurement gives the mean 
scattering length density, N ˆ V , as a function of depth beneath the mean surface.  
Neutron reflectivity is popular in the field of magnetic thin films and multilayers, 
particularly when combined with polarization.  It has been used to measure the size 
and distribution of magnetization as a function of depth as well as more exotic 
phenomena such as magnetic proximity effects, percolating spin-glasses, ‘dead’ 
magnetic layers, and vortices in superconductors. 

3.2 Off-specular scattering 
 Measurement of the off-specular scattering, where the incident angle differs to 
the scattered angle, can give information on in-plane magnetic correlations from 
planar samples.  Studies of magnetic roughness at interfaces, domain structures, and 
correlations between elements on patterned samples are all possible.  The demand for 
these measurements is rapidly increasing as they are of great interest to physicists and 
materials scientists alike, being greatly applicable in the fields of nanomagnetism and 
information storage.  Analysis of off-specular scattering is tremendously difficult, 
however, particularly when combined with neutron polarization analysis.  The theory 
to describe these types of measurements is still in development.  

4. Solving the Phase Problem 
Most neutron scattering experiments measure the neutron intensity.  As such, 

they measure a probability amplitude, while the probability amplitude and phase are 
necessary for an unambiguous solution to the sample wave function.  Conventional 
scattering experiments must therefore rely on fitting a model to the data.  It is 
possible, however, to measure the phase information using polarized neutrons.  The 
neutron magnetic moment may rotate on interaction with the sample.  Eq. (7) gives 
the projection of this rotation on to one axis, however the final spin orientation may 
be anywhere in 4π steradians.  If the neutron polarization is measured, rather than the 
neutron intensity, a unique solution for a magnetic structure may be found.  The 
theory for this is well developed within the Born approximation and experimental 
methods exist for carrying out these measurements on complex antiferromagnets. 
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