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1 – INTRODUCTION 
1 – 1  History of magnetism [1,2] 
In ancient China as well as Europe (i.e. Greece) it had been recognized that pieces of iron are 
attracted by loadstone (Fe3O4). A further fundamental behaviour of such magnets is that if deli-
cately suspended they align with respect to the meridians of earth, which has been used to con-
struct the compass. The earliest European treatises on magnetism are written by P. Peregrinus 
(1269) and W. Gilbert (1600). R. Descartes (1596–1650) marks the transition divorcing physics 
from metaphysics. In 1820 H.C. Oersted found that electric currents have the same effect on a 
compass needle as a piece of loadstone. M. Faraday discovered the magnetic induction in 1831 
and was the first who used the term magnetic field. This line of investigation culminated in the 
beautiful equations bearing the name of J.C. Maxwell (1873) who had not only summarized all 
what was known at that time about electric and magnetic fields and their interactions with matter 
but also introduced the displacement current completing the electric current in the equations 
which now could describe electromagnetic waves such as light and the radio waves then discov-
ered by H.R. Hertz in 1888. After H.A. Lorentz had established his theory of electrons in electro-
magnetic fields it was expected that combining Maxwell's equations and Lorentz's theory would 
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 r = ρ - ∇ P  (6)   i = j + ∇ x M + P (7) 

allow to reproduce the properties of magnetic materials and to confirm the hypothesis of A.M. 
Ampere (1775-1836) that ferromagnetism is caused by (molecular) currents. However N. Bohr 
(1911) and J.H. van Leeuwen (1919) showed that, according to this classical theory, at any finite 
temperature, and all finite applied electric or magnetic fields, the magnetization of a collection of 
electrons in thermal equilibrium vanishes identically, which demonstrates the need for modifying 
the theory by quantization. This has been successfully done in the 20th century.  
 
1 – 2  Magnetism and magnetic materials in our daily life [3,4] 
We are exposed to the earth's field  and to natural electromagnetic waves. Many things we are 
daily concerned with as e.g. TV, radio, portable phone etc. are based on the prediction and the 
invention of Maxwell and Hertz. Magnetism is applied in various domains of great economic 
importance such as energy, traffic, telecommunication, information technologies, home devices 
and medicine. Enhanced effort can also be observed in studies of basic magnetism and in interdis-
ciplinary branches related to magnetism such as geomagnetism and biomagnetism.  
 

The magnetic field is one of the primary parameters of quantum and thermodynamic states. The 
extension of the range of fields available for research belongs to the important new experimental 
approaches. Measurements in higher fields often resulted in the discovery of novel effects in 
physics. Prominent examples are the quantum Hall effects.  
 
2 – MAGNETIC MOMENT AND MAGNETIZATION [5-12] 
 
2 – 1  Magnetization in Maxwell's equations 
The microscopic form of Maxwell's equations (in the SI system of units) is 
 

 
where h and e are the magnetic and the electric field, i is the current density, r the charge density. 
ε0 and µ0 are the electric permittivity and the magnetic permeability of the vacuum. Microscopic 
parts of i (those as proposed by Ampere) can be expressed by the curl of a  vector  M and micro-
scopic contributions to r by the divergence of a vector –P i.e.  

 
 

 

Thus the above equations (1) and (4) take the form  
 
 
 
 
where ρ and j represent the macroscopic charge and current densities. The corresponding averages 
of µ0h and e are designated as B and E, respectively. The macroscopic fields H and D are intro-
duced by the definitions (B – µ0 M) = µ0 H and (ε0E + P) = D. Consequently, the macroscopic 
form of Maxwell's equations (1) to (5) is  
 
 
 
 
A dipole moment of the magnetic "charge density" ∇ H = -∇ M can be introduced by  

∇ x h = ε0 e + i (1)   ∇ h = 0 (2) 
 ∇ x e = -µ0 h  (3)   ∇ ε0 e  = r (4) 
 

  r + ∇ i = 0  (5) 

∇ x (h – M) = ε0 e + P + j  (1') 
∇ (ε0 e  + P) = ρ   (4') 

∇ x H = D + j  (1'')   ∇ B = 0 (2'') 
 ∇ x E= - µ0H  (3'')   ∇ D = ρ (4'') 
 

ρ + ∇ j = 0 (5'') 
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∫∫ τ=∇τ−=
VV

)( MMrm dd      (8) 
 

(M vanishes outside of the volume V). Thus M is the magnetic-moment density. 
 
2 – 2  Magnetic moment and angular momentum 
Eq. (8) can be transformed into  
 

   ∫ ∇τ=
V

)( xx Mrm d
2
1         (9) 

 

where the Amperian molecular current density ∇ x M appears. If we attribute ∇ x M to the mo-
tion of electrons characterized by their (negative) charge e, their charge density ρ, mass m and 
velocity v we obtain 
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where ρm = ρ m/e is the mass density and L is the angular momentum of the electron under con-
sideration. The experiment of A. Einstein and W.J. de Haas (in 1915) revealed that the g factor is 
nearly 2 instead of 1. This was a strong hint that the microscopic description of the electrons has 
to be modified (towards relativistic quantum theory). 
 
2 – 3  Quantization and relativity; diamagnetism  
Maxwell's equations are not sufficient to determine the fields and their sources. Additional equa-
tions are needed that describe the motion of the electrons. However classical mechanics fails in 
describing the majority of the experimental results on solid state magnetism. The results of Ein-
stein and de Haas and those of W. Gerlach and O. Stern (1922) and G. Uhlenbeck and G. 
Goudsmit (1925) brought to light that the electron has an intrinsic angular momentum S charac-
terized by the spin quantum number s = 1/2, and g in Eq. (10), with S instead of L, is close to 2. 
This could be well described by a quantum-relativistic equation found by P. Dirac (1928). If a 
homogeneous magnetic field B of strength B is applied parallel to the z direction Dirac's Hamilto-
nian for one electron in a potential V  can be approximately written as  
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The last term is the spin-orbit interaction with λ depending on details of the potential V . H0 does 
not depend on B. The magnetic moments and the susceptibility have to be calculated by  
 

m = < µ > = – ∂< H >/∂B  χij =  – µ0N ∂2< H >/∂Bi∂B   (15) 
 

where < … > are quantum mechanical expectation values with respect to the eigenstates (in par-
ticular the ground state) of H and N is the number of magnetic moments per unit volume. The 
third term in (14) results in a negative susceptibility. This diamagnetic susceptibility is small 
(typically 10-6 to 10-5). However it dominates if the moments resulting from the second term in 
(14) vanish. Examples of χ values (in 10-6): H2O: –9, copper: –1.1, alcohol: –7.2. 
 
2 – 4  Magnetization in thermodynamics 
In a thermodynamic description of magnetic material the field H appears as a state variable. How-
ever there are some difficulties. One problem is that we often (e.g. in dealing with permanent 
magnets) are interested in thermodynamically metastable states connected with hysteresis phe-
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nomena whereas, strictly speaking, the laws of thermodynamics only hold for states of true ther-
mal equilibrium. Also the magnetic material experiences not only the applied field generated by 
an external source but also the field generated by its own magnetization. Confusion exists as how 
to define a correct expression for magnetic work. Statistical thermodynamics defines the internal 
energy of a system described by a Hamiltonian H as < H > where < … > now means averaging 
over an appropriate statistical ensemble. Consequently the first law of thermodynamics reads 
 

   d< H > = δQ – µ0m dH      (17) 
 

The second term on the right hand side of (17) is the work done on the system described by H and 
δQ is the heat provided to the system. H in (17) is the external field. It is common to use an alter-
native definition of the internal energy of the magnetic material  
 

   U = < H > + µ0 H m        (18) 
 

and, consequently, of the magnetic work: 
 

   ∫ τµ+δ=µ+δ=
V

MHQdmH ddQdU 00     (19) 
 

This does not change the predictions for experimental results. Insofar both definitions of magnetic 
work, the last terms in (19) and (17), are correct. An additional difficulty in the thermodynamics 
of magnetized materials results from the fact that the magnetostatic interaction is long range.  
 
2 – 5  Localized vs. itinerant electron magnetism in solids 
In isolated atoms or ions with incompletely filled electron shells the electron-electron interaction 
results in the formation of magnetic moments in the quantum mechanical ground state, which are 
governed by the three famous Hund's rules. For small fields H the magnetization of a system of 
such atoms  is given by 
 

   M = χ H  with        χ = C/T    (21) 
 

where C is the Curie constant of the considered system. 
 

If such atoms form a solid the behaviour of the electrons differs in different materials. Two main 
types can be distinguished. If the density of the electrons is large as e.g. in Li- or Na-metal the 
electrons are delocalized and itinerant. The Hund's rule magnetic moment disappears, resulting in 
a small, nearly temperature independent susceptibility χ (see below). For small electron densities 
the electrons are strongly correlated and, therefore, they can be localized and carry a magnetic 
moment as e.g. in MnO, FeO, CoO, CuO (antiferromagnets) and EuO, CrCl3 (ferromagnets).  
 
2 – 6  Itinerant electron magnetism 
The itinerant electrons can be described as weakly interacting Landau quasiparticles. Their sus-
ceptibility is approximately temperature independent and is given by  
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where µB is the quantum of magnetic moments, called Bohr's magneton, N(EF) is the density of 
states at the Fermi level EF, ħ is Planck's constant and m* is the effective mass of the considered 
quasiparticles. Eq. (22) is the combination of the paramagnetic contribution of the spins of the 
quasiparticles (W. Pauli 1927) and of their diamagnetic orbital contribution (L.D. Landau 1930). 
Thus metals with large or moderate m* (e.g. Na: m/m* ≈ 1) are Pauli paramagnets, χ > 0, whereas 
those with small m* are Landau diamagnets, χ < 0, as e.g. Bi (m/m* ≈ 102). 



European School of Magnetism : New experimental approaches to Magnetism  - Constanta, 2005 

Basics and magnetic materials I.1 -5 K.-H. Müller 

 

According to Slater (1936) and Stoner (1938) the interaction between itinerant electrons in a solid 
manifests itself as an exchange interaction. This effect has been used to explain the ferromagnet-
ism in systems like Ni or MnSi. If I N(EF) < 1 where I is the strength of the exchange interaction 
the paramagnetic state remains stable. Then the susceptibility is given by 
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describing the exchange enhancement of the Pauli susceptibility in (22). A particularly strong 
enhancement of this type is observed in Pd.  
 
3 – LOCALIZED ELECTRON MAGNETISM [1, 6 – 17] 
 

There is a rich variety of materials with electrons being localized by correlation and carrying a 
magnetic moment. In most cases these moments result from 3d or 4f electrons. However moments 
from other unfilled shells (e.g. 5f or 2p) are also known. Examples for 2p-type magnetic materials 
are solid O2 (an antiferromagnet) and TDAE-C60 (an organic ferromagnet ).  
 

3 – 1  Effects of crystalline electric fields  
In a solid the localized electrons are in the electrostatic field stemming from the atomic 
neighbours, usually called crystalline electric fields (CEF). Depending on the symmetry in the 
solid and the strength of the CEF the contribution of the orbital angular momentum L to the local 
magnetic moment will be reduced or even totally "quenched" which is the reason, why often (e.g. 
in the iron bar of the Einstein-de Haas experiment) only spin magnetic moments are observed.  
 

The CEF cause a mixing of the eigenfunctions of Lz and a splitting of their energy eigenvalues. If 
this splitting is large compared to the Hund's-rule-one interaction, a reduction of the Hund's rule 
value S of the total spin may occur. This is called High-spin–Low-spin transition.  
 

A sufficiently strong spin-orbit interaction (see part 3 –2) prevents the quenching of L and the 
Hund's rule total angular momentum J survives at the site. Typical examples for this are ions of 4f 
elements. Then the CEF will mix the eigenfunctions of Jz and split their energy levels. In certain 
cases such zero-field splitting results in a singlet ground state. If the energy gap between such a 
singlet and the excited states is large enough the site is "non-magnetic" i.e. it has no magnetic 
moment in small applied fields H although it has well defined quantum numbers L, S and J.  
 

If the exchange interaction (see part 3 –4) is strong compared to the CEF the quenching and zero-
field-splitting effects can be overcome. This effect is called induced-moment magnetism. Small 
moments can also be induced by an applied magnetic field which mixes the non-magnetic ground 
state singlet with excited CEF states. This small effect is the Van Vleck paramagnetism. 
 

H.A. Kramers (1930) showed that in a localized atomic site containing an odd number of elec-
trons all energy levels will have an even degeneracy. Such sites can never be in singlet states i.e. 
be non-magnetic, independent of the strength of the CEF.  
 

If finite magnetic moments survive at the atomic sites in the solid (in spite of the CEF) the CEF 
cause magnetic anisotropy which will be discussed in part 4. 
 
3 – 2  Spin orbit interaction 
The spin-orbit interaction is magnetic in its nature. It governs the third Hund's rule i.e. the mutual 
alignment of L and S in atoms and ions. In less then half filled atomic electron shells the parame-
ter λ in (14) is positive i.e. the resulting total angular momentum is J = | L – S | whereas for more 
than half filled shells we have λ < 0 and J = L + S. In solids the S-L-interaction in 4f ions is 
strong compared to the CEF interaction whereas in 3d ions the CEF dominate, resulting in the 
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above discussed L- or S-quenching. The S-L-interaction is essential for the magnetic anisotropy 
because it couples the direction of the spin based magnetization to the spatial wave function of the 
electrons that is stabilized in the solid, due to CEF (see part 4).  
 
3 – 3  Dipolar interaction 
The magnetostatic energy of a pair of magnetic dipoles mi and mj is given by  
 

   5
ji

2
ji

0dip r4
3r

j)(i,E
π
−

µ=
)()()( rmrmmm

    (25) 
 

where r is the displacement vector from mi to mj. This interaction is omnipresent and is relatively 
weak, resulting in magnetic ordering temperatures of typically 1 K only. On the other hand the 
long range character of this interaction has far-reaching consequences: The total dipolar energy of 
a material is the sum of (25) over all pairs (i,j). In a continuum description this is 
 

   H'(r)M(r)τ
µ

−= ∫V
d

2
E 0

dip       (26) 
 

where M(r) is the magnetization at position r and H'(r) is the field generated by M(r) according 
to the field equation (2''), i.e. ∇ H'(r) = – ∇ M(r). The integral in (26) is only semiconvergent i.e. 
it depends on the shape of the sample and the thermodynamic limit V → ∞ cannot be simply con-
sidered. In homogenously magnetized samples, M(r) = M = const., (26) can be written as  
 

 ∑µ
=

ji, jiji,
0

dip MMDV
2

E   ∑ =
i i 1D      (27) 

 

where (Di,j) is the demagnetization tensor which is symmetric. Di (i = 1,2,3) are the non-negative 
eigenvalues of (Di,j), called demagnetization factors. The volume-average of the components of 
H'(r), often called demagnetizing fields, are given by  
 

   <H'i(r)>V = – Di Mi        (29) 
 
3– 4  Exchange interaction 
The simplest form of exchange interaction between two ions is  
 

   Hex(i,j)= – J Si Sj       (30) 
 

This Hamiltonian describes the combined effect of electrostatic interaction (here – between local-
ized electrons on different positions, i and j) and Pauli's exclusion principle. Therefore this inter-
action is isotropic. In the simplest form of exchange interaction, the direct exchange by overlap of 
electron wave functions of neighbours in a solid (W. Heisenberg 1928), is the same physical 
mechanism as the (covalent) chemical bond. In ionic compounds the exchange of the magnetic 
ions (e.g. Cu++ in cuprates) is mediated by wave functions of non-magnetic anions (e.g. O--). This 
indirect exchange is called superexchange mostly resulting in antiferromagnetism (see 5 –1). If 
additionally to the localized magnetic electrons itinerant electrons are present, as e.g. in 4f ele-
ments, an alternative form of indirect exchange (called RKKY interaction) is observed: now a 
given localized electron interacts not only with its nearest neighbours but the interaction (medi-
ated by the itinerant electrons) is long range and even oscillates, changing its strength and sign. In 
mixed valence materials such as (La,Sr)MnO3 mobile Mn-3d electrons mediate the exchange be-
tween neighbouring Mn magnetic ions. This so called double exchange results in ferromagnetism.  
 
4 – ANISOTROPY AND DIMENSIONALITY [7 – 18]  
4 – 1 Types of magnetic anisotropy  
The most important form of magnetic anisotropy is the dependence of the energy on the direction 
of the magnetization where the magnitude of latter can be assumed to be (approximately) inde-



European School of Magnetism : New experimental approaches to Magnetism  - Constanta, 2005 

Basics and magnetic materials I.1 -7 K.-H. Müller 

pendent of the direction. In a microscopic description the most common mechanism for this type 
of anisotropy is the single ion anisotropy which in lowest order in the components of the total spin 
of a given position in the solid, in case of an orthorhombic system, is 
 

   )S(SESD 2
x

2
y

2
zsia −+= ~~H       (31) 

 

Here D~ and E~  are parameters that depend on the strength of the CEF (see 3 –1) and of the S-L-
interaction (see 3 –2), and x, y, z represent the crystallographic axes.  
 

The combination of exchange interaction (see 3 –4) with CEF and S-L-interaction (3 –2) can be 
treated in a perturbational approach which results in the so called anisotropic exchange interac-
tion. For a pair (i,j) of positions in the solid it is given by  
 

   jijiae D SS ˆ=H         (32) 
 

where ( ijD̂ ) is a symmetric tensor. It should be noted that the dipolar interaction (25) has the 
same form as (32), if mi, mj in (25) are identified with the local spin operators Si, Sj. Therefore 
(32) is sometimes called pseudodipolar interaction. In uniformly magnetized bodies the dipolar 
interaction can be macroscopically described by (27). There the anisotropy of the dipolar interac-
tion is expressed by the demagnetization tensor (Dij) and is called shape anisotropy.  
 

For certain symmetries the synergistic effects of exchange, CEF and S-L-interaction result in a 
second form of anisotropic exchange  
 

   HDM = d (Si x Sj)       (33) 
 

where the magnitude of the vector d is a measure of the strength of this antisymmetric or Dzya-
loshinsky-Moriya interaction and d also defines a preferred direction in the considered solid.  
 

Localized magnetic moments with S = ħ/2 (e.g. Cu++) cannot experience single site anisotropy of 
type (31) because Sx

2 = Sy
2 = Sz

2 =  ħ2/4 are constants. In such cases a further form of anisotropy 
can be of relevance, the anisotropy of the g-factor also caused by CEF and S-L interaction. 
 

Magnetic anisotropy prefers axes but not directions i.e. the energy is not changed if all magnetic 
moments in a material are inverted. Nevertheless forms of unidirectional magnetic anisotropy 
have been reported in literature. The most prominent example is the exchange anisotropy (W.H. 
Meiklejohn and C-P. Bean 1957). If a ferromagnet is exchange-coupled to one magnetic sublat-
tices of an antiferromagnet (e.g. on the surface of the latter) the exchange interaction tends to 
align the magnetization of the ferromagnet along the direction of that sublattice magnetization of 
the antiferromagnet. Such preferred direction can be approximately considered as unchangeable.  
 

As expected from the third term in (14) diamagnetism of localized electrons can also be strongly 
ansisotropic. In graphite the ratio of susceptibilities measured parallel and perpendicularly to the 
hexagonal axis is as large as 53. 
 
4 – 2  Magnetic anisotropy and coercivity 
In a continuum theory called micromagnetism ferromagnetic materials are described by a free 
energy which – in simplest cases – is given by 
 

  ∫ µ−
µ

−−
∇

τ=
V
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where Ms is the magnitude of the (saturation) magnetization assumed to be temperature dependent 
but independent of the applied field H. The first term is the exchange energy. Thus A is related to 
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J in (30). The second term is the anisotropy energy where K is related to D~ in (31) or ( ijD̂ )in (32) 
and n is the direction preferred by the magnetic anisotropy. The third term in (35) is the self en-
ergy (26) and the last is the Zeeman energy. A particularly simple case is that n in (35) is parallel 
to one of the principal axes of the demagnetization tensor (27) and H is parallel to n. For large H 
= | H | the body will be uniformly magnetized with M = n Ms. If now H is reduced to become 
negative, at H = 0 there is a first order phase transition where M changes to – n Ms. It was shown 
by W.F. Brown (1963) that, for spherically shaped samples, this jump in magnetization should not 
occur at H = 0 but at the coercive field H = – JHc with  
 

   JHc ≥ HA         (36) 
 

because for – JHc < H < 0 the magnetized state is metastable. In this formula HA = 2 K /Ms is the 
anisotropy field of the material. In most cases the observed values of JHc are orders of magnitude 
smaller than predicted in (36), JHc << HA. This contradiction is called Brown's paradox. Brown's 
paradox is due to the presence of imperfections in the solid state structure in length scales of na-
nometers or even smaller as well as thermal fluctuations and quantum mechanical tunneling.   
 
4 – 3  Magnetism in low dimensional systems 
A system consisting of weakly interacting chains of magnetic moments that are strongly coupled 
within the chains, or weakly interacting planes of strongly coupled moments can be considered as 
quasi-one or quasi-two dimensional, respectively. They are strongly anisotropic systems because 
the strength of interaction is different along different directions. As discussed in part 4 –1 the 
magnetic anisotropy in the magnetic properties of such systems will manifest itself via CEF and 
L-S-interaction. However, even if the CEF and the L-S-interaction are neglected and only the 
Heisenberg Hamiltonian (30) is taken into account (with J strong for pairs i,j within the low di-
mensional subsystem, and J → J⊥ is small for i,j from pairs of different neighbour subsystems), 
the behaviour of such systems is very different for different quasi-dimensionality d because fluc-
tuations make cooperative phenomena very sensitive to dimensionality. The detailed behaviour of 
low-d systems depends on details of the interaction and on the size of the total spin S of the posi-
tions in the solid. An interesting case is the "spin 1/2 Heisenberg antiferromagnet" i.e. J < 0 and S 
= ħ/2 in (30), because there are strong quantum fluctuations. In that case systems with d =1, 2 or 3 
behave totally different although all of them are magnetically isotropic in spite of their anisotropic 
lattice. If the low-d subsystems are weakly coupled a dimensionality crossover may occur. For 
example, if d = 2 planes are stacked and neighbour planes are weakly coupled to each other, at a 
low temperature TN this system manifests its dimensionality d = 3 by antiferromagnetic ordering, 
whereas uncoupled planes would have TN = 0.  
 
5 – PHASE TRANSITIONS AND MAGNETIZATION PROCESSES [1 – 20] 
5 – 1  Types of magnetic order 
The interactions discussed in part 3 result in cooperative behaviour of the localized magnetic 
moments, in particular in quantum mechanical ground states with long range magnetic order. If 
only positive exchange integrals J in (30) occur the ground state magnetic order is very simple: all 
individual magnetic moments will be aligned to be parallel to each other independent of the struc-
ture of the solid. Such ferromagnetic ground state appears also in finite clusters of atoms e.g. in a 
simple dimer with two spins S1 and S2. If J in (30) is negative the situation becomes more compli-
cated. In that case the dimer (for S1 = S2 = ħ/2) has a singlet ground state with no magnetic mo-
ments at the sites 1 and 2 and is separated from the (ferromagnetic) triplet state by an energy gap 
(called spin gap) of width | J |. Antiferromagnetic order can only exist in infinitely large systems 
of sufficiently large dimensionality.  
 

In the simplest type of antiferromagnetic (afm) structure: each spin is antiparallel to its nearest 
neighbours. Depending on the actual lattice structure, the detailed interaction, the number of dif-
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ferent participating magnetic sites etc. very different types of afm structures can occur and a rich 
variety of them have been determined using advanced technologies as neutron scattering, x-ray 
magnetic scattering, Mössbauer spectroscopy, nuclear magnetic resonance (NMR) and muon spin 
relaxation (µSR). In systems with sufficiently low lattice symmetry the DM-interaction (33) can 
lead to some canting of the moments of the afm structure, resulting in a small net magnetization 
(as e.g. in La2CuO4). This effect is called weak ferromagnetism. A net magnetization also arises in 
ferrimagnets where the magnetic moments are antiparallel ordered but they have different sizes, 
as e.g. the different iron magnetic moments in the large class of ferrites which are widely used in 
soft magnetic and permanent magnet materials. If the exchange between the local magnetic mo-
ments is mediated by itinerant electrons this RKKY interaction can cause spiral structures (spin 
density waves) which can be commensurate or incommensurate with respect to the lattice struc-
ture. Typical examples for this are the 4f elements and their intermetallic compounds. 
 

If different interactions (that intend to orient a given magnetic moment in different directions) are 
in competition effects of frustration will occur. Usually the system will resolve frustration by 
forming more than two magnetic sublattices. Another type is geometrical frustration where even 
uniform nearest neighbour interaction is in competition due to the specific lattice structure (e.g. 
the d = 3 pyrochlore lattice). The ground states of such materials have no long range order and are 
called spin liquid, spin ice or cooperative paramagnetism. Frustration arising from competing 
interactions in the presence of disordered solid structures  can result in a spin glass state with the 
orientations of their magnetic moments being frozen and randomly distributed. 
 
5 – 2  Magnetic domains 
In a ferromagnetic sample is governed by the first and second term in (35) domain walls can be 
formed separating uniformly magnetized domains. The wall width δ and the wall energy per unit 
area, γ, are given by 
 

   A/K~δ    AK~γ     (39) 
 

The magnetostatic selfenergy of the (uniformly magnetized) sample i.e. (27) or the third term in 
(35) can be reduced by the formation of domains. The actual domain structure is the result of the 
balance of the energy stored in the domain walls and of magnetostatic energy. For reasons of such 
energy balance, spherical particles with an diameter below the critical single-domain size 
 

   2
s0c MAKD µ/~        (40) 

 

do not form domain structures, i.e. they are single domain. In modern rare-earth transition-metal 
permanent magnets δ is a few nanometers and Dc is a few hundreds of nanometers. The width of 
the domains depend on the sample size. 
 

As proposed by Y. Imry and S.K. Ma (1975), in random anisotropy systems i.e. those with ran-
dom n in (35) or random orientation of local z-axes in (31), domain like structures are formed that 
are not caused by magnetostatic selfenergy (i.e. dipolar interactions) but by minimizing the ex-
change energy in the presence of the random anisotropy. 
 

If in fine-grained hard magnetic materials the crystallites are coupled by a reduced exchange in-
teraction or by magnetostatic interaction only, coarse magnetization structures have been found 
that extend over many of the crystallites. They have been called interaction domains. 
 
5 – 3  Ordering and reorientation phase transitions  
Simple magnetic systems characterized by exchange parameters J in (30) show a monotonic de-
crease of the magnetization in ferromagnets or the alternating magnetization in antiferromagnets 
with increasing temperature. According to L.D. Landau the change from the paramagnetic state at 
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high temperatures to ferromagnetism or antiferromagnetism has to be a second order phase tran-
sition because it separates states with different symmetries. If, however, there are significant 
magneto-elastic couplings in the material fluctuations in magnetization can induce distortions of 
the crystal lattice resulting in a first order phase transition. The low temperature behaviour of 
systems exhibiting a second order magnetic phase transition can be well described by spin waves 
whereas the overall temperature dependence of magnetization can rather well be reproduced by 
mean field approximations. If the strength of the coupling between different subsystems is only 
moderate these subsystems will dominate different ranges of the energy spectrum of the combined 
Hamiltonian and, consequently, they will reveal their own temperature scales. Therefore many 
different types of phase transitions may occur. Thus in GdBa2Cu3O7 the d = 2 sublattice of Cu++ 
magnetic moments (S = ħ/2) orders antiferromagnetically at TN[Cu] ≈ 95 K, whereas the d ≈ 3 Gd 
sublattice orders at TN[Gd] ≈ 2.2 K, probably due to dipolar interaction (25). In ferrimagnets with 
heavy 4f elements and 3d elements often the main contribution of the magnetization at low tem-
peratures comes from the 4f element whereas at high temperatures the contribution of the 3d 
magnetic moment dominates. Since 4f magnetic moments stronger decrease with increasing tem-
perature than the 3d moments the total magnetic moment of such materials disappears at a certain 
temperature, the compensation temperature Tcomp. In GdCo4B the ordering temperature is TC = 
505 K and Tcomp is as high as 410 K. 
 

An other class of phase transitions, the spin reorientation transitions appear if the contributions of 
different subsystems to magnetic anisotropy are different in sign and have a different temperature 
dependence. Thus in Nd2Fe14B the contribution of Nd and Fe to K in (35) compensate at T = TSRT 
≈ 135 K i.e. the anisotropy constant K changes its sign at TSRT and consequently the material 
changes its type of magnetic anisotropy from "easy axis" at high temperatures to "easy cone".  
 
5 – 4  Metamagnetic transitions 
The concept of metamagnetic transitions is now used to describe the large class of field-induced 
magnetic phase transitions. They are characterized by a jump or at least an upward curvature in 
the field dependence of magnetization. In a spin-flip transition the antiparallel magnetic moments 
in antiferromagnets are reversed by the field H (applied parallel to the axis of the magnetic mo-
ments) if the anisotropy constant K is large enough. At some critical field both sublattices become 
suddenly parallel to H. Examples are TbCu2 and DyCo2Si2 at low temperatures. If in the same 
experiment K would have been sufficiently small (classical example: CuCl2·H2O) the axis of op-
positely aligned afm sublattice magnetizations would suddenly rotate at some critical field to be-
come nearly perpendicular to H, which results in a jump in the magnetic susceptibility. This is a 
spin flop transition. Upon further increasing | H | the sublattice magnetizations change their direc-
tion continuously until, at an upper critical field, they are parallel to H. In ferrimagnets a similar 
flopping phenomenon occurs even at zero K because at small H the axis of the two sublattice 
magnetizations will be parallel to H. First order magnetization processes (FOMPs) occur if in an 
applied field the effects of different (higher order) anisotropy constants are in competition.  
 

Paramagnetic metamagnetism: as discussed in part 3 –1 if in systems strong CEF dominate the 
magnetic properties the ground state can be a singlet resulting in a very weak (Van Vleck) para-
magnetism. In a large field so called level crossing may occur i.e. magnetic CEF energy levels 
will become lower than the mentioned singlet. Consequently the susceptibility jumps to become 
as large as in Langevin-Curie paramagnets (examples: TmSb, PrNi5, Pr). 
 

E.P. Wohlfarth and P. Rhodes (1962) predicted the phenomenon of collective electron metamag-
netism later often called itinerant electron metamagnetism (IEM). This is a transition from Pauli 
paramagnetism to ferromagnetism if a sufficiently large field H is applied. Meanwhile many ma-
terials are known that exhibit IEM, as e.g. YCo2, LuCo2, La(Fe,Si)13. 
 



European School of Magnetism : New experimental approaches to Magnetism  - Constanta, 2005 

Basics and magnetic materials I.1 -11 K.-H. Müller 

5 – 5  Quantum phase transitions 
Phase transitions at zero temperature are called quantum phase transitions which, in other words, 
are abrupt qualitative changes of the quantum mechanical ground state in dependence on external 
parameters such as pressure, concentration of some element, magnetic field etc. They are driven 
by quantum fluctuations. The paramagnetic metamagnetism and the itinerant electron metamag-
netism (mentioned in part 5 –4) are simple examples of magnetic quantum phase transitions. A 
further example is the Ising ferromagnet LiHoF4 in a magnetic field applied perpendicularly to its 
magnetic axis. At some critical field the system becomes a (quantum) paramagnet.  
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