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In this lecture, I will study some interplays between the field of mesoscopic physics (which describes
fully coherent electronic systems) and classical magnetism. I will start with a discussion of some
classical mesoscopic experiments (Aharononv-Bohm effect, conductance quantification) which show
non local behaviors. Those experiments helped to realize that the conductivity of a phase coherent
system is a meaningless concept and only the conductance of the whole can be defined properly.
Then I will introduce the Scattering theory of transport and the Landauer formula which relates the
conductance to the scattering properties of the system. In the second part, the scattering approach
will be applied to two different magnetic systems: a ferromagnet—normal-metal-ferromagnet trilayers
and a magnetic domain wall. We will study the effect of magnetism on the transport properties as
well as its counter part, the spin torque exerted on the magnetization by the conducting electrons.

I. AN ELEMENTARY INTRODUCTION TO TRANSPORT IN A MESOSCOPIC SYSTEM.

When do we really need quantum mechanics to describe the physical properties, let us say the conductance, of
a solid state system? Take for instance a regular copper wire with a 1mm section and have a 14 current flowing
through it. At what velocity do the copper’s electrons go? The current density j = 10A.m =2, while the electronic
density is n. ~ 1030 electron per m? (there is roughly one copper atom every Angstrom and each of them gives one
valence electron.) Now if we use the classical relation j = e n.v, we obtain that the average electronic velocity is
v ~ 107%m.s~1, which is two or three orders of magnitude too slow. What went wrong in that way of thinking is
that we forgot completely the Pauli principle (and the Bloch theory of bands) which freezes the electrons far from the
Fermi sea so that eventually no more than 1% of them are participating to the transport properties. In that sense,
we need quantum mechanics to describe properly the transport properties of any electronic system although we know
that our copper wire conductance is very well described by Ohm’s law.

What one calls mesoscopic systems are systems where the electrons really behave both as particles and waves at
the same time so that the predictions of quantum mechanics become strongly different from what one can obtain
from semi-classical approaches, even at a qualitative level. In practice those ”strongly quantum mechanical” devices
are just regular electronic systems (such as the Field Effect Transistors that one can find in any PC) that are put
in a dilution fridge at temperatures in the milli-kelvin range. At these temperatures many degrees of freedom of the
system (like the phonons for instance) are frozen, and the phase of the wave function describing the electrons become
a well defined quantity, hence the need for a fully quantum mechanical description.

A. Transport in a phase coherent system. Examples of ”non local” experiments where quantum mechanics
is fully in action.

In Fig.1, T have sketched two standard experiments that illustrate a few aspects of the conductance of a coherent
object. In the upper one Fig.1 (a), one measures the conductance of a small metallic wire (a four points measurement:
two contacts are used to inject the current I and the voltage difference V' is measured on the other two.) connected
to a small loop. When a magnetic field B is put through the system the conductance g shows oscillations. This
experiment teaches us three things:

e (i) If this system was to be described by Ohm'’s law, the electrons would go directly from the +I electrode to
the —1I electrode and would never see the loop. Hence, the conductance of such a system would not depend on
the magnetic field B. In other word, there is no way we can define a conductivity for this system, and we have
to consider it as a whole.

e (ii) the oscillations die at higher temperature when the phase of the wave function is not well defined. Indeed
they are due to interference between trajectories going clockwise and counter clockwise in the loop and such an
effect needs phase coherence.
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e (iii) the magnetic field inside the metallic part is actually zero (we imagine we have a very thin solenoid going
through the loop) while the flux inside the loop is not. Hence the system is not sensible to the magnetic field
itself but to the vector potential, another manifestation of quantum mechanics.

In the second experiment (Fig.1 (b)), one measures the conductance of a two-dimensional electron gas (in a GaAs
heterostructure for instance) connected to two electrodes. In top of the gas, two (triangular) gates have been deposited
and, when polarized with a gate voltage V,, they deplete the gas underneath creating a constriction. Such a system
is known as a QPC (Quantum Point Contact). Remarkably, one observes that g exhibit plateaux as a function of Vj.
Those plateaux are quantized in unit of % ~ (10kQ) 1. Here again, the wave nature of the electrons shows up, and
the conductance quantification can be understood if one considers that the gates act as wave guides allowing only a

few modes too propagate.

FIG. 1: Schematic of two experiments with mesoscopic samples. In (a) one measures the conductance g of a metallic wire
connected to 4 contacts and one loop. g oscillates as a function of an Aharonov-Bohm flux put through the loop. (b) Quantum
Point Contact (QPC): a two dimensional electron gas (inside the dotted lines) is connected to two electrodes at a potential
+V and —V. Two triangular gates are deposited in top of the gas and are used to deplete the electron underneath them and
create a constriction. As a function of the gate voltage V, used to polarize the gates, g exhibit steps.

At this stage, one should be convinced of the necessity of a quantum mechanical description of our system which
raises a few theoretical questions. In particular, since the apparatus (and the experimentalist!) are classical objects,
one needs to stop the quantum mechanical description at some point, and connect our quantum object to the classical
world. The formalism that does that is the scattering theory of transport, and will be outlined in the next section.

B. The ballistic system as an ”electronic wave guide”. Introduction of the scattering matrix S. The
Landauer formula for the conductance.
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FIG. 2: In this ideal wire, the part 1 and 3 are ballistic while all the scattering takes place in region 2. The electrons are
confined in the region 0 <y < W and the wire is attached to two ideal reservoirs.

We focus now on a two dimensional wire confined in the y direction on a width W as sketched in Fig.2. In part 1
and 3 of this system, the dynamics is ballistic (no potential) while all kind of imputities, roughness,...lie in region 2.
The scattering theory of this system is done in two steps.
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In step I, we want to study the solutions ¥(#) of its Schrédinger equation, hence doing plain quantum mechanics.
The Schrodinger equation reads in this case,

L AW() + V()R = B M)

where the potential V() is zero outside region 2 and ¥(z,y = 0) = U(xz,y = W) = 0 due to the confinement in the y
direction. The solutions of Eq.(1) in region 1 and 3 are just a superposition of plane waves (we neglect the evanescent
modes) with longitudinal and transverse momentum being respectively k, and k,. Due to the hard wall condition
in the transverse direction, k, is quantized in unit of 27 /W and can take Ny, (number of open channels) different

values, that keep the mode propagating (i.e. k, = (/2mE/h? — k7 real).

z€l:¥(x,y) Z in( nelk” + blne_lk”] (2)
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Now, we don’t know what ¥(z, y) looks like in region 2, but we do know that ¥(z,y) and its derivative are continuous
at the 1 — 2 and 2 — 3 interfaces. Those conditions imply that a linear constraint links aq, and by, to as, and bs,.
This constraint is written using the S matrix that relates the outgoing modes to the ingoing ones:

bin n . t
(bin)zs(i;) Wlthsz(;,r,) 4)

where S has been parameterized in term of the transmission (¢,t') and reflection (r,r') submatrices. Probability current
in region 1 (3) reads >_,, |a1n|® — |bin|* (32, [bsn|? — |asn|?), hence current conservation enforces the orthogonality of
the S matrix, SST = 1.

Step II consists of giving ourself a prescription as to how those eigenstates are to be filled when the wire is attached
to two reservoirs, each of them characterized by a temperature and a chemical potential. This prescription (which took
quite a few years to emerge) is that the incoming modes coming from one reservoir have the equilibrium distribution
given by this reservoir. With that prescription, we can now calculate physical quantities such as the current flowing
through the wire. In the case of zero temperature and small bias voltage, we get for the conductance of the system,

2
g= Z Tr ttf. (5)

Eq.(5) is known as the Landauer formula. It relates the conductance of the system to its S matrix, and has been
used widely in mesoscopic physics. Most of the remaining difficulties lie in trying to determine the properties of the
S matrix. ¢! has N, eigenvalues 0 < T}, < 1 called transmission probabilities, so that Eq.(5) can be rewritten as,

2e Nen
9= Zn:1 T

C. Application to broken junctions. Experiments with paramagnetic and ferromagnetic metals.

As a first application of the Landauer formula, we can go back to the QPC described in Fig.1 (b). There the region
2 has no potential, and the transmission matrix ¢ is just identity. The Landauer formula therefore reads g = 2%Nch
and the conductance quantification appears naturally, the gate voltage controlling the number of opened channels.
One should realize that this result is somehow paradoxal: the Landauer formula predicts an non zero resistance, in
the absence of any scattering in the system. Not to mention that the quantum mechanical description made in the
previous section is completely elastic, so that a priori the system has no way to dissipate the energy associated with
the Joule effect.

The metallic equivalent of the QPC are broken junctions, where one inject current through a few metallic atoms.
In contrast with the QPC, there the fermi wave length (roughly the ”size” of a channel) coincide with the size of the
atom. However, broken junctions give the possibility to study various metals, and magnetic ones in particular.
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II. APPLICATION OF THE LANDAUER FORMULA TO MAGNETIC SYSTEMS

In this second part, we will apply the scattering theory introduced in the first one to magnetic systems. To do
so, we need to make one modification to the previous theory, namely taking into account the spin structure of the S

matrix,
Syt S
g— [ St N) 6
(SH Sy (6)

Otherwise, the formalism can be applied as it is. In addition to the charge current studied in the previous section,
I x [dy¥(z,y)0,¥(z,y) we will be interested in the spin current J flowing through the system, whose definition
differs from the charge current by the presence of Pauli matrices:J J dy¥(z,y)30, ¥ (z,y).

A. Ferromagnetic-Normal Metal-Ferromagnetic trilayer. GMR. Spin injection and magnetization reversal.

Let us start with a system made of three metallic thin layers with a current flowing perpendicularly to the layers
(see Fig.4). Two of those layers are magnetic while the spacer in between (that we will ignore in our theoretical
description) is a normal metal. For the sake of simplicity, we suppose that the (majority) electrons whose spins are
aligned with the local magnetization are fully transmitted while the (minority) electrons whose spins are antialigned
are fully reflected.

With such a simple model, the conductance of the system is readily calculated. When the magnetization of the two
layers are aligned, the majority spins are fully transmitted while the minority spins are reflected, hence g = Nepe?/h.
On the contrary, when the magnetizations are anti-aligned, the majority spins of one layer are the minority of the other
and vice versa, hence g = 0. A magnetic field will bring the system from the anti-aligned to the aligned configuration,
increasing the conductance. This phenomena is known as the Giant-Magneto-Resistance effect.

More interesting than the electronic current is what happens to the spin current in this system. Consider for instance
a spin polarized current incident on a single magnetic layer such that the electrons’ spins make an angle 8 with the
magnetization of the layer, as shown in Fig.3. Along the layer’s magnetization, the incoming electrons’ spins can be
considered as a coherent superposition of majority spins with amplitude cos#/2 and minority spins with amplitude
sin /2. Hence, the electron will be transmitted with probability cos®#/2 and reflected with probability sin® 6/2. The
important point here, is that the incident spin current along the x-axis, proportional to sin#/2 x cosf/2 « siné is
lost in the process. Hence, unlike the electrical current, spin current is not conserved. This is quite puzzling since we
know that had we started our discussion with a full microscopic model, the total angular momentum of the system
would have been bound to be conserved. Hence whatever spin current is lost by the conducting electrons has to be
transferred to the electrons responsible for the magnetization. and a spin torque is exerted on the magnetization of
the layer.
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FIG. 3: Polarized electrons incident on a single magnetic layer.

In order to get this spin-torque in a real sample, you need polarized current. This is achieved by using not one but
two magnetic layers, one thick one in charge of polarizing the current (hereafter labelled F,), and a thin one upon
which the torque is exerted (layer Fp). When the electrons enter the sample from the right, see Fig.4a, electrons
transmitted from F, will be polarized along its magnetization, hence exerting a torque on F,. The torque, which is
simply calculated as the difference of spin current on the two sides of Fj, tends to align the magnetization of F toward
the one of F,. The situation is quite different when the current is flowing in the other direction, see Fig.4b. There,
the incident electrons coming on the left on F} are not polarized and do not exert any torque. However, those which
are reflected by F, get polarized and do exert a torque on Fjy. Since they are polarized after a reflection instead of a
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transmission as in the previous case, their polarization, hence the torque, is of opposite sign. Thus this torque tends
to anti-align the magnetization of F} with respect to the one of F,. By using a strong enough current, one should be
able to switch back and forth the direction of the magnetization of Fy, in the absence of any external magnetic field.
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FIG. 4: Magnetic threelayer. One layer (F,) is used as a polarizer while the torque can switch the direction of the magnetization
of other one (Fp).

B. Transport in a magnetic domain wall. Spin injection and Larmor precession.

The previous analysis can also be done in the case of a magnetic domain wall in a ferromagnetic wire. It is however,
slightly more subtle since now, we need to keep track of the magnetization direction which is no longer constant in
space and we will stick here to more qualitative arguments. Let A, be the length of the domain wall (i.e. the length
over which the direction of the magnetization is fully reversed). If A, is large enough, the change in the magnetization
direction is very slow, and the electrons will have time to adapt there spin adiabatically to the local direction of the
magnetization. The question that arises naturally is how does this adaptation take place. It could, in principle, be
due to all kind of relaxation processes (like spin-orbit, coupling to phonons...). There is however, a faster mechanism,
namely Larmor precession. When an electron enters the wall (Fig.5a), the magnetization direction starts to rotate
and an angle « starts to build between it and the electron’s spin (Fig.5b). Hence, the spin start to precess around
the magnetization (Fig.5c). This precession take place on a length scale A;, (Larmor precession length, roughly the
inverse of the difference between the Fermi momentum of the majority and minority spins). After Ay /2, the spin has
made half a roundtrip around the magnetization (Fig.5d) and the angle a is now decreasing. Hence the mistracking
of the electron’s spin is roughly a ~ 7wAr/A,. Let par (pm) be the resistance of the majority (minority) channel
for an infinite wall (& = 0). The resistance p in that case is obtained by adding the two resistances in parallel,
0= prPm/(pm+ prm). When a # 0 however, the domain wall causes a slight mixing of the two channels (i.e they are
partly in parallel) which causes an increase Ap = a(py — pm)?/(par + pm) of resistance. In addition, it is immediate
to realize that a spin going adiabatically through a domain wall is fully flipped in the process, giving A of angular
momentum to the wall magnetization. It results that a global pressure is exerted on the wall, pushing it in the
direction of the electronic flow.
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FIG. 5: Competition between the rotation of the magnetization and Larmor precession in a domain wall. The thick arrow
stands for the electron spin while the thin one stands for the magnetization.

III. CONCLUSION AND BIBLIOGRAPHY

The reader interested in mesoscopic physics in general might refer to [1] and to [2, 3] for the application of Scattering
theory to transport. The spin torque was first predicted by Slonczewski in [4] and the first experiments done in [5].
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The scattering formulation of the spin torque is done in [6]. Domain wall physics can be looked at in [7].
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